[1] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[2] FUJINO M. Design and development of the Honda jet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[3] CAMPBELL R, CAMPBLL M, STREIT T. Progress toward efficient laminar flow analysis and design[C]//29th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2011.
[4] CROUCH J. Boundary-layer transition prediction for laminar flow control (Invited)[C]//45th AIAA Fluid Dynamics Conference. Reston, VA:AIAA, 2015.
[5] GREEN B E, WHITESIDES J L, CAMPBELL R L, et al. Method for the constrained design of natural laminar flow airfoils[J]. Journal of Aircraft, 1997, 34(6):706-712.
[6] GOPALARATHNAM A, SELIG M S. Low-speed natural-laminar-flow airfoils:Case study in inverse airfoil design[J]. Journal of Aircraft, 2001, 38(1):57-63.
[7] CAMPBELL R L, LYNDE M N. Natural laminar flow design for wings with moderate sweep[C]//34th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2016.
[8] SEITZ A, KRUSE M, WUNDERLICH T, et al. The DLR project LamAiR:Design of a NLF forward swept wing for short and medium range transport application[C]//29th AIAA Applied Aerodynamic Conference. Reston, VA:AIAA, 2011.
[9] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction[C]//47th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2009.
[10] AMOIGNON O G, PRALITS J O, HANIFI A, et al. Shape optimization for delay of laminar-turbulent transition[J]. AIAA Journal, 2006, 44(5):1009-1024.
[11] DRIVER J, ZINGG D W. Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction[J]. AIAA Journal, 2007, 45(8):1810-1818.
[12] RASHAD R, ZINGG D W. Toward high-fidelity aerodynamic shape optimization for natural laminar flow[C]//21st AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2013.
[13] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337.
[14] CAMERON L, EARLY J, MCROBERTS R. Metamodel assisted multi-objective global optimisation of natural laminar flow aerofoils[C]//29th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2011.
[15] 华俊, 张仲寅, 施宁光, 等. 现代自然层流翼型的设计方法[J]. 空气动力学学报, 1993, 11(1):57-63. HUA J, ZHANG Z Y, SHI N G, et al. Numerical design method for modern NLF airfoils[J]. Acta Aerodynamica Sinica, 1993, 11(1):57-63(in Chinese).
[16] 乔志德.自然层流超临界翼型的设计研究[J]. 流体力学实验与测量[J]. 1998, 12(4):23-31. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-31(in Chinese).
[17] 王迅, 蔡晋生, 屈崑, 等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报, 2015, 36(2):449-461. WANG X, CAI J S, QU K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):449-461(in Chinese).
[18] HAN Z H, DENG J, LIU J, et al. Design of laminar supercritical airfoils based on Navier-Stokes equations[C]//28th Congress of the International Council of the Aeronautical Sciences, 2012.
[19] HAN Z H, CHEN J, ZHU Z, et al. Aerodynamic design of transonic natural-laminar-flow (NLF) wing via surrogate-based global optimization[C]//54th AIAA Aerospace sciences meeting. Reston, VA:AIAA, 2016.
[20] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[21] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化设计研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese).
[22] ZHANG Y F, FANG X, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.
[23] 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10):1817-1826. HUANG J T, GAO Z H, BAI J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay Graph Mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1817-1826(in Chinese).
[24] GAO Z H, HUANG J T. Advanced research on laminar flow aerodynamic configuration optimization for green aircraft[C]//32nd AIAA Applied Aerodynamic Conference. Reston, VA:AIAA, 2014.
[25] ZHAO H, GAO Z H, WANG C, et al. Robust design of high speed natural-laminar-flow airfoil for high lift[C]//AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2017.
[26] 邓磊, 乔志德, 杨旭东, 等. 高升阻比自然层流翼型多点/多目标优化设计[J]. 空气动力学学报, 2011, 29(3):330-335. DENG L, QIAO Z D, YANG X D, et al. Multi-point/objective optimization design of high lift-to-drag ratio for NLF airfoils[J]. Acta Aerodynamica Sinica, 2011, 29(3):330-335(in Chinese).
[27] 陈永彬, 唐智礼, 盛建达. 跨声速自然层流翼型多目标优化设计[J]. 计算物理, 2016, 33(3):283-296. CHEN Y B, TANG Z L, SHENG J D. Multi-objective optimization for natural laminar flow airfoil in transonic flow[J]. Chinese Journal of Computational Physics, 2016, 33(3):283-296(in Chinese).
[28] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.
[29] 卜月鹏, 宋文萍, 韩忠华, 等. 基于CST参数化方法的翼型气动优化设计[J]. 西北工业大学学报, 2013, 31(5):829-836. BU Y P, SONG W P, HAN Z H, et al. Aerodynamic optimization design of airfoil based on CST parameterization method[J]. Journal of Northwestern Polytechnical University, 2013, 31(5):829-836(in Chinese).
[30] HAN Z H. SurroOpt:A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]//30th Congress of the International Council of the Aeronautical Sciences, 2016.
[31] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[32] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2016, 55(3):925-943.
[33] XIE F T, SONG W P, HAN Z H. Numerical study of high-resolution scheme based on preconditioning method[J]. Journal of Aircraft, 2009, 46(2):520-525.
[34] ZHANG K, SONG W P. Infinite swept-wing Reynolds-averaged Navier-Stokes computations with full eN transition criterion[C]//27th International Congress of the Aeronautical Sciences, 2010.
[35] STOCK H W. Navier-Stokes computations of laminar airfoils using eN transition prediction:Rept. IB 12999[R]. Braunschweig:DLR-Interner Bericht, DLR, German Aerospace Center, 1999:18
[36] HAN Z H, DENG J, LIU J, et al. Design of laminar supercritical airfoils based on Navier-Stokes equations[C]//28th Congress of the International Council of the Aeronautical Sciences, 2012.
[37] BOLTZ F W, KENYON G C, ALLEN C Q. Effects of sweep angle on the boundary-layer stability characteristics of an untapered wing at low speeds[R]. Washington, D.C.:NASA, 1960.
[38] 朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2):121707. ZHU Z, SONG W P, HAN Z H. Automatic transition prediction for wing-body configurations using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121707(in Chinese).
[39] GEZA S. Large-scale laminar flow tests evaluated with linear stability theory[J]. Journal of Aircraft, 2004, 41(2):224-230.