流体力学与飞行力学

动力干扰下宽体客机机翼多目标优化设计

  • 薛帮猛 ,
  • 张文升 ,
  • 孙学卫 ,
  • 吴宇昂
展开
  • 中国商飞北京民用飞机技术研究中心 民用飞机设计数字仿真技术北京市重点实验室, 北京 102211

网络出版日期: 2018-07-13

基金资助

国家级项目

Multi-objective wing shape optimization for a wide-body civil aircraft in wing-body-pylon-powered nacelle configuration

  • XUE Bangmeng ,
  • ZHANG Wensheng ,
  • SUN Xuewei ,
  • WU Yuang
Expand
  • Beijing Key Laboratory of Simulation Technology for Civil Aircraft Design, COMAC Beijing Aeronautical Science and Technology Research Institute, Beijing 102211, China

Online published: 2018-07-13

Supported by

National Level Project

摘要

在机翼/机身/吊挂/动力短舱(WBPN)构型中开展了宽体客机机翼外形多目标优化设计。通过对动力短舱流场的动量积分,分析了直接用壁面积分"阻力"作为机体外形减阻优化设计目标函数的合理性。计算研究了短舱/吊挂的安装,以及发动机喷流对翼吊布局宽体客机机翼的干扰作用,展示了同时在安装效应和喷流干扰下设计机翼外形的重要性。运行搭建于超级计算机上的优化系统,求解雷诺平均Navier-Stokes(RANS)方程计算流场,实现了动力干扰下机翼外形的三点三目标优化设计。在80 h内,完成了近20 000个方案的计算评估,遗传优化近40代。所选的最优方案阻力发散性能明显提高,自动优化后的人工修形设计使机翼剖面展向过渡和压力分布形态更为理想。动力构型下取得的减阻效果,在通气短舱构型下亦得到验证和确认。

本文引用格式

薛帮猛 , 张文升 , 孙学卫 , 吴宇昂 . 动力干扰下宽体客机机翼多目标优化设计[J]. 航空学报, 2019 , 40(2) : 522381 -522381 . DOI: 10.7527/S1000-6893.2018.22381

Abstract

A recent effort of multi-objective wing shape optimization for a wide-body civil aircraft in Wing-Body-Pylon-powered Nacelle (WBPN) configuration is presented. Based on the momentum analysis for the flow-field of a powered-on configuration, the nominal "drag" directly from wall integration can be reasonably used as the cost function in airframe shape optimizations without thrust/drag bookkeeping. The lift losses of the baseline shape induced by pylon/nacelle and jet are calculated, and the results show the importance of considering both the installation and jet effects when designing wing shape of a wing-mounted wide-body aircraft. By running an automated optimization framework setup on a super computer, a three objective wing shape optimization process for the powered-on configuration is completed in 80 h. Nearly twenty thousand cases with 40 generations of evolution are evaluated by solving Reynolds Averaged Navier-Stokes (RANS) equations. The selected optimum has better performance of drag divergence than the baseline. A manual refinement process after automatic optimization improves both spanwise thickness variation and the distribution of sectional pressure. The drag reduction achieved under power-on configuration is also affirmed by the verification calculation under the flow through configuration.

参考文献

[1] HOHEISEL H. Aerodynamic aspects of engine-aircraft integration of transport aircraft[J]. Aerospace Science and Technology, 1997, 7(1):475-487.
[2] VASSBERG J, DEHAAN M, RIVERS M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[3] OLIVEIRA G L, TRAPP L G, PUPPIN-MACEDO A. Integration methodology for regional jet aircrafts with underwing engines:AIAA-2003-0934[R]. Reston, VA:AIAA, 2003.
[4] SAITOH T, KIM H J, TAKENAKA K, et al. Multi-point design of wing-body-nacelle-pylon configuration:AIAA-2006-3461[R]. Reston, VA:AIAA, 2006.
[5] KOC S, KIM H J, NAKAHASHI K. Aerodynamic design of complex configurations with junctions[J]. Journal of Aircraft, 2006, 43(6):1838-1844.
[6] KIM H J, NAKAHASHI K. Surface mesh movement for aerodynamic design of body-installation junction[J]. AIAA Journal, 2007, 45(5):1138-1142.
[7] TAKENAKA K, HATANAKA K, NAKAHASHI K. Efficient aerodynamic design of complex configurations by patch-surface approach[J]. Journal of Aircraft, 2011, 48(5):1473-1481.
[8] BONS N P, MADER C A, MARTINS J, et al. High-fidelity aerodynamic shape optimization of a full configuration regional jet:AIAA-2018-0106[R]. Reston, VA:AIAA, 2018.
[9] 左英桃, 傅林, 高正红, 等. 机翼-机身-短舱-挂架外形气动优化设计方法[J]. 航空动力学报, 2013, 28(9):2009-2015. ZUO Y T, FU L, GAO Z H, et al. Aerodynamic optimization design of wing-body-nacelle-pylon configuration[J]. Journal of Aerospace Power, 2013, 28(9):2009-2015(in Chinese).
[10] 张宇飞, 陈海昕, 符松, 等. 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33(11):1993-2001. ZHANG Y F, CHEN H X, FU S, et al. A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1993-2001(in Chinese).
[11] 薛帮猛, 张文升, 张志雄. 民机飞发集成构型中机翼多目标优化设计[J]. 空气动力学学报, 2018, 36(6):941-948. XUE B M, ZHANG W S, ZHANG Z X. Multi-objective optimization of civil aircrafts under engine-aircraft integration configuration[J]. Acta Aerodynamica Sinica, 2018, 36(6):941-948(in Chinese).
[12] 乔磊, 白俊强, 华俊, 等. 大涵道比翼吊发动机喷流气动干扰研究[J]. 空气动力学学报, 2014, 32(4):433-438. QIAO L, BAI J Q, HUA J, et al. Interference effects of wing-mounted high bypass ratio nacelle with engine power[J]. Acta Aerodynamica Sinica, 2014, 32(4):433-438(in Chinese).
[13] 谭兆光, 陈迎春, 李杰, 等. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24(8):1766-1772. TAN Z G, CHEN Y C, LI J, et al. Numerical simulation method for the powered effects in airframe/propulsion integration analysis[J]. Journal of Aerospace Power, 2009, 24(8):1766-1772(in Chinese).
[14] VON GEYR H F, ROSSOW C C. A correct thrust determination method for turbine powered simulators in wind tunnel testing:AIAA-2005-3707[R]. Reston, VA:AIAA, 2005.
[15] LABAN M. Aircraft drag and thrust analysis:NLR-TP-2000-473[R]. Amsterdam:Netherlands Aerospace Centre, 2000.
[16] ZHANG Y F, CHEN H X, FU S, et al. Drag prediction method of powered-on civil aircraft based on thrust drag bookkeeping[J]. Chinese Journal of Aeronautics, 2015, 28(4):1023-1033.
[17] KOOI J W, DE HAIJ L, HEGEN G H. Engine simulation with turbofan propulsion simulators in the German-Dutch wind tunnels:AIAA-2002-2919[R]. Reston, VA:AIAA, 2002.
[18] LABAN M, SOEMARWOTO B, KOOI J W. Reshaping engine nacelles for testing in wind tunnels with turbofan propulsion simulators:AIAA-2005-3703[R]. Reston, VA:AIAA, 2005.
[19] BOUSQUET J M. Survey of engine integration testing in ONERA wind tunnels:AIAA-2005-3705[R]. Reston, VA:AIAA, 2005.
[20] KULFAN B M, BUSSOLETTI J. Fundamental parameteric geometry representations for aircraft component shapes:AIAA-2006-6948[R]. Reston, VA:AIAA, 2006.
[21] KULFAN B M. A universal parametric geometry representation method-CST:AIAA-2007-0062[R]. Reston, VA:AIAA, 2007.
[22] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.
[23] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
文章导航

/