舰载机气动强度与着舰安全性关键技术专栏

阻拦索断裂对螺旋桨舰载机着舰安全影响数值分析

  • 张声伟 ,
  • 段卓毅 ,
  • 耿建中 ,
  • 王立波
展开
  • 航空工业第一飞机设计研究院, 西安 710089

收稿日期: 2018-05-08

  修回日期: 2018-06-08

  网络出版日期: 2018-07-04

Numerical analysis of the effect of block cable crack on landing safety of propeller carrier-based aircraft

  • ZHANG Shengwei ,
  • DUAN Zhuoyi ,
  • GENG Jianzhong ,
  • WANG Libo
Expand
  • AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2018-05-08

  Revised date: 2018-06-08

  Online published: 2018-07-04

摘要

喷气动力舰载机着舰拦阻滑跑,如阻拦索断裂,其逃逸复飞的概率极小。螺旋桨动力舰载机零升阻力大,推重比小,其安全复飞的能力值得研究。本文基于建立的螺旋桨舰载机逃逸复飞仿真模型(含阻拦索工作模型、发动机动力响应模型、升降舵操纵模型与气动力的动力影响修正模型),数值模拟了E-2C舰载预警机着舰阻拦索断裂情况下,其逃逸复飞的过程。仿真计算显示对象飞机在不同气动力、离舰速度与舵面操纵逻辑状态下,其纵向动力学方程中敏感参数与航迹下沉量的动态变化,结合视频数据分析其复飞成功的原因。研究表明:动力对螺旋桨舰载机俯仰力矩与升力特性的影响是其逃逸复飞成功的关键。动力影响使对象飞机的俯仰力矩曲线上移0.15,8°迎角下纵向静稳定性减小85%,升力线斜率增大29.7%、最大升力系数增大39%。这显著改善了螺旋桨飞机逃逸复飞状态下俯仰操纵的敏捷性,升降舵操纵效率与失速特性。动力影响使螺旋桨舰载机可在较小的加速度、离舰速度与有限的留空时间情况下,迅速改变其航迹角,减小航迹下沉量,保证逃逸复飞安全。

本文引用格式

张声伟 , 段卓毅 , 耿建中 , 王立波 . 阻拦索断裂对螺旋桨舰载机着舰安全影响数值分析[J]. 航空学报, 2019 , 40(4) : 622293 -622293 . DOI: 10.7527/S1000-6893.2018.22293

Abstract

If the arresting cable is broken during the arrest sliding of the jet-powered carrier aircraft, the probability of escape and re-flight of the carrier will be extremely small. As the aircraft has a large zero-liter resistance and a small push-weight ratio, its ability to safely re-flight is worth studying. A simulation model for the escape and return flight of the propeller carrier aircraft is built, including a working sub-model for the blocking cable, a sub-model for the engine dynamic response, a sub-model for elevator steering, and a sub-model for correction of the aerodynamic influence. The process of escape and re-flight of the E-2C shipborne early warning aircraft under the condition of vessel blocking cable fracture is numerically simulated. The dynamic changes of the amount of track sinking and the main motion parameters in the longitudinal dynamics equation for the carrier under different aerodynamic forces at different departure speed and with different steering surface control logic are obtained. The simulation results, together with the video data, are analyzed to get the reasons for successful re-flight of the carrier aircraft. The study shows that the influence of power on the pitch torque and lift of the propeller carrier aircraft is the key to its success of escape and re-flight. The power effect causes the plane's pitch moment curve to shift upward 0.15. The longitudinal static stability at the 8° angle of attack decreases by 85%, the slope of the lift line increases by 29.7%, and the maximum lift coefficient increases by 39%, demonstrating significant improvement of the agility of pitch control, efficiency of elevator control, and stall characteristics of the propeller aircraft during escape and re-flight. The power influence enables the propeller carrier aircraft to quickly change its track angle, reduce the sinking amount of the track, and ensure the safety of escape and re-flight.

参考文献

[1] ANDERSON M R. Inner and outer loop manual control of carrier aircraft landing:AIAA-1996-3877[R]. Reston, VA:AIAA, 1996.
[2] SUBRAHMANYAM M B. HINF design of F/A-18A automatic carrier landing system[J]. Journal of Guidance and Dynamics, 1994, 17(1):188-190.
[3] JOHNL C, JOSEPH D M. Robust control design of an automatic carrier landing system:AIAA-1992-4619[R]. Reston, VA:AIAA, 1992.
[4] 许东松, 刘星宇, 王立新. 航母运动对舰载飞机着舰安全性的影响[J]. 北京航空航天大学学报, 2011, 37(3):289-294. XU D S, LIU X Y, WANG L X. Influence of carrier motion on landing safety for carrier-based airplanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3):289-294(in Chinese).
[5] 贾忠湖, 高永, 韩维. 航母纵摇对舰载机弹射起飞的限制研究[J].飞行力学, 1995, 13(4):23-27. JIA Z H, GAO Y, HAN W. Research on the limitation of vertical to ssto the war ship based aircraft[J]. Flight Dynamics, 1995, 13(4):23-27(in Chinese).
[6] 夏桂华, 董然, 孟雪, 等. 舰载机着舰的动力学建模[J]. 哈尔滨工程大学学报, 2014, 35(4):445-456. XIA G H, DONG R, MENG X, et al. Research on the dynamic modeling for the landing of a carrier-based aircraft[J]. Journal of Harbin Engineer University, 2014, 35(4):445-456(in Chinese).
[7] RICHARDS R. Artificial intelligence techniques for pilot approach decision aid logic (PADAL) system:N68335-98-C-0027[R].1998.
[8] 金长江, 洪冠新. 舰载机弹射起飞及拦阻着舰动力学问题[J]. 航空学报, 1990, 11(12):534-542. JIN C J, HONG G X. Dynamic problems of carrier aircraft catapultlaunching and arresting landing[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(12):534-542(in Chinese).
[9] 刘星宇, 许东松, 王立新. 舰载飞机弹射起飞的机舰参数适配特性[J]. 航空学报, 2010,31(1):102-108. LIU X Y, XU D S, WANG L X. Match characteristics of aircraft carrier parameters during catapult take off of carrier based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):102-108(in Chinese).
[10] ARNEY. A mffg-7 ship motion and airwake trial:AD-A291174[R]. Fort Belvoir:DTIC, 1994.
[11] CLIFF R, KAHHN J. Availability and expection of successful operation of MARK7 arresting gear:AD693649[R]. Fort Belvoir:DTIC, 1969.
[12] LEO STANLEY R J. Performance analysis of a turbo-type energy absorber for an aircraft carrier arresting gear:AD728682[R]. Fort Belvoir:DTIC, 1995.
[13] 董庚寿, 张俊, 周佳. 舰载飞机飞行品质规范编制的原则依据和设想[J].飞行力学, 1993, 11(4):1-6. DONG G S, ZHANG J, ZHOU J. The principle basis and idea of compiling the carrier aircraft flying qualities specification[J]. Flight Dynamics, 1993, 11(4):1-6(in Chinese).
[14] 夏贞锋. 螺旋桨滑流与气动力干扰数值分析方法[D]. 西安:西北工业大学, 2016:55-78. XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an:Northwestern Polytechnical University, 2016:55-78(in Chinese).
[15] 张明辉, 袁理, 洪冠新. 航空母舰液压拦阻系统拦阻力建模与仿真[J]. 北京航空航天大学学报, 2010, 36(1):100-103. ZHANG M H, YUAN L, HONG G X. Modeling and simulation of aircraft carrier hydraulic blocking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1):100-103(in Chinese).
[16] 李新飞. 舰载机起降关键技术仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2013:33-67. LI X F. Simulation of key technology of launch and land for carrier-based aircraft[D]. Harbin:Harbin Engineering University, 2013:33-67(in Chinese).
[17] 吴娟, 何长安. 新型飞机拦阻系统特性分析[J]. 航空学报, 2003, 24(5):68-70. WU J, HE C A. Characteristics analysis of new type aircraft-arresting system[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(5):68-70(in Chinese).
[18] 杨一栋. 舰载机进场着舰规范评估[M]. 北京:国防工业出版社, 2006:59-63. YANG Y D. Review of the carrier approach criteria[M]. Beijing:National Defence Industry Press, 2006:59-63(in Chinese).
[19] 沈怡君. E-2C舰载预警机的气动及雷达目标特性分析[D]. 南京:南京航空航天大学, 2015:15-35. SHEN Y J. Aerodynamic characteristic analysis and the stealth characteristics analysis of E-2C hawkeye[D]. Nanjing:Nanjing University of Aerodynamics and Astronautics, 2015:15-35(in Chinese).
[20] 杨小川, 王运涛, 王光学, 等. 螺旋桨非定常滑流的高效数值模拟研究[J]. 空气动力学学报, 2014, 32(3):166-169. YANG X C, WANG Y T, WANG G X, et al. Numerical simulation of unsteady propeller slipstream[J]. Acta Aerodyanamica Sinca, 2014, 32(3):166-169(in Chinese).
[21] 张声伟, 王伟. 外吹式襟翼动力增升效果评估方法[J]. 航空学报, 2017, 38(6):135-138. ZHANG S W, WANG W. Research on method for evaluate powered high-lift effects of externally blown[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):135-138(in Chinese).
文章导航

/