Due to its long range and high cruise Mach number, the aerodynamic design of wide-body aircraft requires high precision of its wind tunnel data. To obtain reliable base data of wind tunnel for wide-body aircraft, this paper improves the correction method and related facility in FL-26 wind tunnel of China Aerodynamics Research and Development Center. The test data of high-speed wind tunnel for wide-body aircraft are corrected in several ways, including boundary constrains (support and wall interference), model deformation and flow distortion (flow angle and buoyancy drag). These corrections lay a firm foundation for Reynolds numbers, hydroaeroelasticity and dynamic effect. Results indicate that reliable test results of supporting interference can be obtained by measuring the distribution of the positions of the tail cavity pressure and the length of the false support rod extending into the tail cavity of the model by 50 mm. Within the range of the test envelope, the wall interference has minor influence on the lift, drag and pitch moment coefficients of the wide-body aircraft model. The deformation of the test model significantly influences the aerodynamic characteristics of the wide-body aircraft. After deformation, the lift slope at Mach number=0.85 decreases by 0.005, and the moment focus is moved forward by 0.021 bA. These discrepancies need to be corrected in future tests.
[1] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. The applications, requirements and the challenges of CFD in aeronautic engineering field[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[2] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese).
[3] 王发祥. 高速风洞试验[M]. 北京:国防工业出版社, 1994:150-157. WANG F X. High speed wind tunnel test[M]. Beijing:National Defense Industry Press, 1994:150-157(in Chinese).
[4] 刘大伟, 陈德华, 尹陆平, 等. 2. 4米跨声速风洞条带悬挂支撑试验技术研究[J]. 空气动力学学报, 2016, 34(3):354-361. LIU D W, CHEN D H, YING L P, et al. Investigation on the vane cable suspension support system in the 2. 4m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(3):354-361(in Chinese).
[5] 陈德华, 林俊, 郭旦平, 等. 大型飞机高速气动力关键问题解决的技术手段及途径[J]. 流体力学实验与测量, 2004(2):52-58. CHEN D H, LIN J, GUO D P, et al. Technical ways to solve high speed key aerodynamic problems of large air transporters[J]. Experiment and Measurement in Fluid Mechanics, 2004(2):52-58(in Chinese).
[6] 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1):62-80. ZHANG Z Y, HUANG X H, YIN J, et al. Researh status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1):62-80(in Chinese).
[7] 蒋晓莉. 简论风洞试验数据到飞行数据修正体系[J]. 民用飞机设计与研究, 2009(2):8-10. JIANG X L. Brief discussion on wind tunnel test data to flight data correction system[J]. Civil Aircraft Design Research, 2009(2):8-10(in Chinese).
[8] 陈德华, 尹陆平, 吴文华, 等. 2.4米跨声速风洞大展弦比飞机测力试验技术研究[J]. 空气动力学学报, 2009, 27(5):542-546. CHEN D H, YIN L P, WU W H, et al. The test technique for aircraft with high aspect ratio in the 2. 4m transonic tunnel[J]. Acta Aerodynamica Sinica, 2009, 27(5):542-546(in Chinese).
[9] 杨立芝, 李俊甫, 董军. 高速风洞支架干扰数值修正研究[J]. 流体力学实验与测量, 2001(3):84-88. YANG L Z, LIN J F, DONG J.computational investigation of longitudinal support interferences in hiag speed wind tunnel[J]. Experiment and measurement In Fluid Mechanics, 2001(3):84-88(in Chinese).
[10] 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3):120298. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120298(in Chinese).
[11] PATRICK W G, ADAM R T. Developing a semi-span wall interference correction capability in the national full-scale aerodynamics complex 40-by 80-foot wind tunnel:AIAA-2017-0776[R]. Reston, VA:AIAA, 2017.
[12] HUANG Y Y. Development of experimental investigation on transonic wind tunnel wall interference[J]. Acta Aerodynamica Sinica, 1987(2):181-187.
[13] 张其成. 壁压法用于高速风洞洞壁干状修正[J].南京航空学院学报,1992, 24(5):496-505. ZHANG Q W. Wall-signature methods for high speed wind tunnel wall interference corrections[J]. Journal of Nanjing Aeronautical Institute, 1995, 24(5):496-505(in Chinese).
[14] 孙岩. 风洞模型变形单相机测量误差分析与补偿算法[J]. 航空学报, 2015, 36(7):2114-2115. SUN Y. Error analysis of single-camera model deformation measurement in wind tunnel and compensation algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2114-2115(in Chinese).
[15] 李强, 刘大伟,陈德华. 高速风洞中条带悬挂支撑干扰研究[J]. 实验流体力学, 2017, 31(1):100-108. LI Q, LIU D W, CHEN D H. Study on the support interference of vane suspension support system in high speed wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1):100-108(in Chinese).
[16] 陈德华, 刘大伟, 尹陆平, 等. 2.4 m跨声速风洞多功能支撑系统试验技术研究[J]. 实验流体力学, 2013, 27(3):98-102. CHEN D H, LIU D W, YIN L P, et al. The study of versatile support system in the 2. 4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):98-102(in Chinese).
[17] 陈德华, 王维新, 王晋军, 等. 2.4 m跨声速风洞流场性能调试研究[J]. 空气动力学学报, 2004, 22(3):279-282. CHEN D H, WANG W X, WANG J J, et al. Investigation on flow-field debugging for 2. 4m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2004, 22(3):279-282(in Chinese).
[18] HACKETT J E, WILSDEN D J, STEVENS W A. A review of the wall pressure signature and other tunnel corrrection methods for angle-of-attack tests:19810015587[R]. Washington D.C.:NASA, 1981.
[19] 黄守智, 李杰, 蒋胜矩, 等. 基于变形网格技术的非定常流动数值分析方法研究[J]. 弹箭与制导学报, 2005(S6):186-188. HUANG S Z, LI J, JIANG S J, et al. Unseteady viscous flow simulations with deforming grid[J]. Journal of Projecteles and Guides, 2005(S6):186-188(in Chinese).
[20] 许秋儿. 网格变形技术研究[D]. 杭州:浙江大学, 2011. XU Q E. Research on techniques of mesh deformation[D]. Hangzhou:Zhejiang University, 2011(in Chinese).
[21] SAMAREH J A. Application of quaternions for mesh deformation:NASA-2002-211646[R]. Washington, D.C.:NASA, 2002.