Reusable launch vehicles use combined control techniques of Reaction Control System (RCS) and aerodynamic surfaces for trim and control; however, the aerodynamic surfaces and RCS may affect each other because of the short distance between them. The control characteristic of aerodynamic surfaces when the jet is on and off is investigated using the unsteady numerical simulation method, moving grid technique and simulation technique of lateral jet. The dynamic response processes in pitching of the reusable launch vehicle with different maneuver modes are analyzed. The study shows that the trim angle of attack when the jet is on is one degree smaller than that when the jet is off at supersonic flow, in which the bow shock before the jet nozzle hits on the ruddervator and result in high pressure causing the nose-down pitching moment. Meanwhile, the unsteady and nonlinear interaction between the lateral jet and the flaperon is found, so the compensation mechanism is needed in the design of the combined control system.
[1] 鹿存侃, 胡永太. 气动舵面/RCS复合控制系统构型设计与仿真[J]. 航空学报, 2016, 37(S1): 106-111. LU C K, HU Y T. Design and simulation of configurations for aerodynamic surfaces/RCS blended control system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 106-111 (in Chinese).
[2] 吴了泥. 可重复使用运载器亚轨道再入段制导与控制技术研究[D]. 南京: 南京航空航天大学, 2009: 4-7. WU L N. Research on guidance and control technology of suborbital reentry for reusable launch vehicle[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2009: 4-7 (in Chinese).
[3] 房元鹏. 可重复使用航天器再入段复合控制方法研究[J]. 飞行力学, 2008, 26(1): 60-63. FANG Y P. Research on composite control method for reusable launch vehicle[J]. Flight Dynamics, 2008, 26(1): 60-63 (in Chinese).
[4] FARES E, HUPPERTZ G, ABSTIENS R, et al. Numerical and experimental investigation of the interaction of wingtip cortices and engine jets in the near field: AIAA-2002-0403[R]. Reston, VA: AIAA, 2002.
[5] SEMENTI J P. Jet exhaust and wing flap interactions: AIAA-2002-0017[R]. Reston, VA: AIAA, 2002.
[6] WANG F Y, ZAMAN K B M Q. Aerodynamics of a jet in the vortex-wake of a wing: AIAA-2001-1119[R]. Reston, VA: AIAA, 2001.
[7] Engine jet/vortex interaction in the near wake of an airfoil: AIAA-2006-3747[R]. Reston, VA: AIAA, 2006.
[8] STANLEY F B, LYUBIMOV D A, BUCHSHTAB P A, et al. Jet-pylon interaction effects: AIAA-2005-3082[R]. Reston, VA: AIAA, 2005.
[9] 唐志共, 杨彦广, 刘君, 等. 横向喷流干扰/控制研究进展[J]. 实验流体力学, 2010, 24(4): 1-6. TANG Z G, YANG Y G, LIU J, et al. The investigation and expectation on lateral jet interaction/control[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 1-6 (in Chinese).
[10] 许晨豪, 蒋崇文, 高振勋, 等. 高超声速飞行器反作用控制系统喷流干扰综述[J]. 力学与实践, 2014, 36(2): 147-155. XU C H, JIANG C W, GAO Z X, et al. The jet interaction effects of reaction control systems in hypersonic vehicles[J]. Mechanics in Engineering, 2014, 36(2): 147-155 (in Chinese).
[11] 刘耀峰, 薄靖龙. 侧向喷流干扰流场建立与消退过程数值模拟[J]. 宇航学报, 2015, 36(8): 877-884. LIU Y F, BO J L. Numerical simulation of establishment/vanishment process of lateral jet interaction flowfield[J]. Journal of Astronautics, 2015, 36(8): 877-884 (in Chinese).
[12] 李亚超, 阎超, 张翔, 等. 超声速横向喷流侧向控制的数值模拟[J]. 北京航空航天大学学报, 2015, 41(6): 1073-1079. LI Y C, YAN C, ZHANG X, et al. Numerical simulation of lateral control in supersonic cross jet flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1073-1079 (in Chinese).
[13] 李斌, 王学占, 刘仙名. 大攻角侧向多喷干扰流场特性数值模拟[J]. 航空学报, 2015, 36(9): 2828-2839. LI B, WANG X Z, LIU X M. Numerical investigation of multi-lateral jets interactions flow characteristics at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2828-2839 (in Chinese).
[14] 吴飞, 邵万仁, 何敬玉, 等. 分开排气式喷管喷流噪声预测及试验研究[J]. 航空学报, 2016, 37(6): 1790-1797. WU F, SHAO W R, HE J Y, et al. Experimental and prediction research on jet noise for separated exhaust nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1790-1797 (in Chinese).
[15] 贺旭照, 秦思, 卫锋, 等. 吸气式高超声速飞行器非均匀尾喷流试验[J]. 航空学报, 2017, 38(3): 120199. HE X Z, QIN S, WEI F, et al. Test of non-uniform nozzle plume for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120199 (in Chinese).
[16] 陈坚强, 陈琦, 谢昱飞, 等. 侧向喷流与舵面运动相互干扰的数值模拟研究[J]. 宇航学报, 2014, 35(5): 515-520. CHEN J Q, CHEN Q, XIE Y F, et al. Numerical study on the interaction of lateral jet and rudder movement[J]. Journal of Astronautics, 2014, 35(5): 515-520 (in Chinese).
[17] WHITMORE S A, DUNBAR B J. Orbital space plane: Past, present, and future: AIAA-2003-2718[R]. Reston, VA: AIAA, 2003.
[18] 陈琦. 飞行器气动/控制一体化机动飞行的数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016: 17-67. CHEN Q. Numerical study of maneuvering flight of vehicle coupling aerodynamics and control[D]. Mianyang: China Aerodynamics Research and Development Center, 2016: 17-67 (in Chinese).
[19] 陈坚强, 陈琦, 袁先旭, 等. 舵面操纵动态响应的数值模拟[J]. 力学学报, 2013, 45(2): 302-306. CHEN J Q, CHEN Q, YUAN X X, et al. Numerical simulation study on dynamic response under rudder control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 302-306 (in Chinese).