固体力学与飞行器总体设计

基于飞行参数的飞机结构载荷最优回归模型

  • 兑红娜 ,
  • 王勇军 ,
  • 董江 ,
  • 刘小冬
展开
  • 航空工业成都飞机设计研究所 强度部, 成都 610010

收稿日期: 2018-03-26

  修回日期: 2018-05-04

  网络出版日期: 2018-06-15

基金资助

国防基础科研(JCKY2016205A004)

Optimal regression model for aircraft structural load based on flight data

  • DUI Hongna ,
  • WANG Yongjun ,
  • DONG Jiang ,
  • LIU Xiaodong
Expand
  • Department of Strength, AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610010, China

Received date: 2018-03-26

  Revised date: 2018-05-04

  Online published: 2018-06-15

Supported by

Defense Industrial Technology Development Program (JCKY2016205A004)

摘要

基于飞行参数获取外场飞机疲劳关键结构载荷历程是结构故障预测与健康管理系统的一项关键技术,如何构建鲁棒性好且精度高的结构载荷回归模型是保证载荷识别和寿命预测准确性的关键。结合多元线性回归分析,提出并详细介绍了一种筛选最优输入参数组合的技术途径:首先,进行多重共线性诊断以减弱自变量之间的多重共线性;然后,进行残差分析,删除异常样本点;最后,采用逐步回归法筛选出最优自变量组合。指出传统的多重共线性诊断方法存在一定弊端,并分别基于偏相关系数法和辅助回归方程法,提出了2种更为合理可行的诊断方法。以典型战斗机翼身连接框某关键部位的载荷和应力为样本数据,对最优输入参数组合的筛选步骤展开详细说明,验证了所提出的技术途径不仅可以确保飞机结构载荷模型的精度,而且可以提高模型的稳定性和鲁棒性。

本文引用格式

兑红娜 , 王勇军 , 董江 , 刘小冬 . 基于飞行参数的飞机结构载荷最优回归模型[J]. 航空学报, 2018 , 39(11) : 222158 -222167 . DOI: 10.7527/S1000-6893.2018.22158

Abstract

In-service structural load monitoring at critical locations based on flight data is a key technique for structural prognostic and health management system of the aircraft, and a robust and precise load model is important for load monitoring and fatigue life prediction of the aircraft. Based on multi-linear regression analysis, an approach for synthetically screening the optimal combination of input variables is presented and introduced in detail. First, the multi-collinearity diagnosis should be conducted to attenuate the multi-collinearity between independent variables. Then, residual analysis is carried out to remove abnormal observations. Finally, stepwise regression is used to find the best combination of independent variables. Traditional multi-collinearity diagnosis methods have some defects, so two more feasible methods are put forward to reduce multi-collinearity based on partial correlation coefficient method and auxiliary regression equation method, respectively. As a case study, the load and stress data at a critical wing attachment bulkhead location of a typical fighter are used to illustrate the procedures of screening the optimal combination of input variables. It is proved that the approach can not only ensure the accuracy of aircraft structural load model, but also improve the stability and robustness of the model.

参考文献

[1] WHITE E. Progress in structural health management for aerospace vehicles[C]//Presented to Los Alamos National Lab Damage Prognosis Workshop, 2001.
[2] GARCIA W, BAIR R. F-22 force management overcoming challenges to maintain a robust usage tracking program[C]//2006 USAF ASIP Conference, 2006.
[3] FALLON T, MAHAL D. F-35 joint strike fighter structural prognostics and health management: An overview[C]//25th ICAF Symposium, 2009.
[4] MICHAEL R, MCCONNELL W. Structural Prognostics and Health Management (SPHM) for the F-35 Lightning Ⅱ[C]//2009 Aircraft Structural Integrity Program (ASIP) Conference, 2009.
[5] HUNT S, HEBDEN I. Eurofighter 2000: An integrated approach to structural health and usage monitoring[C]//Proceedings 19th Symposium of the International Committee on Aeronautical Fatigue: Fatigue in New and Aging Aircraft, 1997.
[6] HUNT S, HEBDEN I. Validation of the Eurofighter Typhoon structural health and usage monitoring system[C]//European COST F3 Conference on System Identification and Structural Monitoring, 2000: 743-753.
[7] AKTEPE B, MOLENT L. Management of airframe fatigue through individual aircraft loads monitoring programs[C]//Proceedings 8th International Aerospace Congress, 1999.
[8] MOLENT L. A unified approach to fatigue usage monitoring of fighter aircraft based on F/A-18 experience[C]//Proceedings 21st Congress of the International Council of Aeronautical Sciences, 1998.
[9] MOLENT L, AKTEPE B. Review of fatigue monitoring of agile military aircraft[J]. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23(9): 767-785.
[10] TIKKA J, SALONEN T. Parameter based fatigue life analysis for F-18 aircraft[C]//24th ICAF Symposium, 2007.
[11] KANEKO H, FURUKAWA T. Operational loads regression equation development for advanced fighter aircraft[C]//24th International Congress of the Aeronautical Sciences, 2004.
[12] CARUSO P. Verification of IAT program equations[C]//2008 USAF ASIP Conference, 2008.
[13] KUMAR R, GANGULI R, OMKAR S. Rotorcraft parameter identification from real time flight data[J]. Journal of Aircraft, 2009, 45(1): 333-341.
[14] KOUBA G, BOTEZ R. Fuzzy logic method use in F/A-18 aircraft model identification[J]. Journal of Aircraft, 2010, 47(1): 10-17.
[15] WANG Y J, DONG J, LIU X D, et al. Identification and standardization of maneuvers based upon operational flight data[J]. Chinese Journal of Aeronautics, 2015, 28(1): 133-140.
[16] WITTINK D R. The application of regression analysis[M]. Boston: Allyn and Bacon, 1988: 58-98.
[17] MONTGOMERY D. ELIZABETH A P. Introduction to linear regression analysis[M]. Hoboken, NJ: John Wiley & Sons, 2007: 102-150.
[18] 高惠璇. 应用多元统计分析[M]. 北京: 北京大学出版社, 2005: 45-89. GAO H X. Application of multivariate statistical analysis[M]. Beijing: Peking University Press, 2005: 45-89 (in Chinese).
[19] 师义民, 徐伟, 秦超英, 等. 数理统计[M]. 北京: 科学出版社, 2009: 199-208. SHI Y M, XU W, QIN C Y, et al. Mathematical statistics[M]. Beijing: Science Press, 2009: 199-208 (in Chinese).
文章导航

/