流体力学与飞行力学

基于直升机舰面起降动态仿真的风限图计算

  • 吉洪蕾 ,
  • 赵辉 ,
  • 陈仁良 ,
  • 吴文韬
展开
  • 1. 重庆大学 航空航天学院, 重庆 400030;
    2. 南京航空航天大学 航空宇航学院 直升机旋翼动力学国家级重点实验室, 南京 210016;
    3. 中国船舶工业系统工程研究院, 北京 100094

收稿日期: 2018-03-23

  修回日期: 2018-06-06

  网络出版日期: 2018-06-15

基金资助

国家自然科学基金(11672128);中央高校基本科研业务费专项资金(2018CDXYHK0016)

Wind-over-deck envelope calculation based on simulation of helicopter shipboard operations

  • JI Honglei ,
  • ZHAO Hui ,
  • CHEN Renliang ,
  • WU Wentao
Expand
  • 1. College of Aerospace Engineering, Chongqing University, Chongqing 400030, China;
    2. National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. Systems Engineering Research Institute, Beijing 100094, China

Received date: 2018-03-23

  Revised date: 2018-06-06

  Online published: 2018-06-15

Supported by

National Natural Science Foundation of China (11672128); the Fundamental Research Funds for the Central Universities (2018CDXYHK0016)

摘要

建立了基于直升机舰面起降动态仿真的风限图(WOD)计算方法,综合计入舰船尾流、直升机运动和驾驶员操控等多因素的作用提升风限图计算的准确度。基于耦合舰船非定常尾流的飞行动力学模型,发展了适于直升机多轴协同操控的驾驶员模型,建立了舰面起降轨迹的数学描述和生成方法,形成计入舰船尾流、直升机运动和驾驶员操控等多因素综合作用的直升机舰面起降动态仿真方法。在此基础上,总结风限图计算判据,建立风限图计算方法。计算结果表明,某些风况下直升机在舰面起飞和降落过程中受到舰船尾流的干扰远大于在甲板上方悬停时受到的作用。本文方法能够捕捉到不同起降点和起降方式导致舰船尾流时空变化的干扰,与传统计算方法相比,显著提升了风限图计算的准确度。

本文引用格式

吉洪蕾 , 赵辉 , 陈仁良 , 吴文韬 . 基于直升机舰面起降动态仿真的风限图计算[J]. 航空学报, 2018 , 39(11) : 122156 -122167 . DOI: 10.7527/S1000-6893.2018.22156

Abstract

This paper presents a Wind-Over-Deck (WOD) envelope calculation method by simulation of helicopter shipboard operations. Impacts of ship airwake, helicopter motions, and pilot controls are all taken into consideration to improve the accuracy of WOD envelope calculation. First, based on the flight dynamics model coupling with unsteady ship airwake, a pilot model is developed for helicopter maneuvering requiring multi-axis controls. Then, the mathematical description and generation algorithms of the classical helicopter shipboard flight trajectories are proposed. Finally, a dynamic simulation method for helicopter shipboard operations is obtained considering the impacts of ship airwake, helicopter motions and pilot controls comprehensively. Based on the simulation results of helicopter shipboard operations, the rejection criteria for WOD envelope calculation are summarized, and a calculation method of WOD envelope is developed. The calculated results show that the impacts of the ship airwake along the shipboard launching and recovery trajectories on helicopter flight states and pilot controls are greater than those above the landing spots in some WOD conditions. The proposed method can capture the impacts of the temporal and spatial variations of ship airwake above different landing spots and along different flight trajectories. In comparison with the traditional WOD calculation method, the proposed method significantly can improve the accuracy of WOD calculation.

参考文献

[1] 赵惟义, 刘航, 傅百先. 舰载直升机风限图及其试飞[J]. 飞行力学, 2002, 20(4): 48-50. ZHAO W Y, LIU H, FU B X. Safe operating envelopes of onboard helicopter and its flight test[J]. Flight Dynamics, 2002, 20(4): 48-50 (in Chinese).
[2] 王存仁, 朱玉兵. 直升机-舰组合风限图计算方法研究[J]. 飞行力学, 1996, 14(1): 36-40. WANG C R, ZHU Y B. A study on the method of calculation for helicopter-ship take-off/landing flight envelope[J]. Flight Dynamics, 1996, 14(1): 36-40 (in Chinese).
[3] 孙文胜. 直升机着舰安全包络线(风限图)计算方法[D]. 南京: 南京航空航天大学, 1994. SUN W S. A computational method determining the helicopter operations envelope on shipboard[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1994 (in Chinese).
[4] 孙传伟, 高正, 孙文胜. 舰面流场对直升机着舰时悬停操纵的影响[J]. 南京航空航天大学学报, 1999, 31(6): 614-619. SUN C W, GAO Z, SUN W S. Analysis of unmanned helicopter hovering in ship flow field over flight deck[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1999, 31(6): 614-619 (in Chinese).
[5] 赵维义, 王占勇. 舰船空气尾流场对直升机着舰的影响研究[J]. 海军航空工程学院学报, 2007, 22(4): 435-438. ZHAO W Y, WANG Z Y. Research on the effect of warship air-wake on helicopter landing on shipboard[J]. Journal of Naval Aeronautical Engineering Institute, 2007, 22(4): 435-438 (in Chinese).
[6] 李军亮, 胡国才, 王浩. 侧风对舰载直升机悬停性能的影响[J]. 海军航空工程学院学报, 2010, 25(2): 129-132. LI J L, HU G C, WANG H. Performance analysis of shipboard helicopter resist to side wind in hover[J]. Journal of Naval Aeronautical Engineering Institute, 2010, 25(2): 129-132 (in Chinese).
[7] HOENCAMP A, PAVEL M D. Concept of a predictive tool for ship-helicopter operational limitations of various in-service conditions[J]. Journal of the American Helicopter Society, 2012, 57(3): 1-9.
[8] 徐广, 胡国才, 王允良, 等. 直升机在复杂舰面流场中的悬停研究[J]. 南京航空航天大学学报, 2015, 47(2): 205-211. XU G, HU G C, WANG Y L, et al. Research on helicopter hover on flight deck in complicated airflow field[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(2): 205-211 (in Chinese).
[9] 徐广, 胡国才, 王允良. 舰载直升机在复杂流场环境中的着舰策略[J]. 南京航空航天大学学报, 2016, 48(2): 194-199. XU G, HU G C, WANG Y L. Landing strategy of shipborne helicopter in complicated airflow environment[J]. Journal of Nanjing Umiversity of Aeronautics and Astronautics, 2016, 48(2): 194-199 (in Chinese).
[10] POLSKY S A, BRUNER C W S. Time-accurate omputational simulations of an LHA ship airwake: AIAA-2000-4126[R]. Reston, VA: AIAA, 2000.
[11] FORREST J S, OWEN I. An investigation of ship airwakes using detached-eddy simulation[J]. Computers & Fluids, 2010, 39(4): 656-673.
[12] 郜冶, 刘长猛, 贺征. 风向变化产生的航母甲板涡结构特征研究[J]. 空气动力学学报, 2013, 31(3): 310-315. GAO Y, LIU C M, HE Z. Research on CVN deck vortices structure characteristics caused by wind direction changes[J]. Acta Aerodynamica Sinica, 2013, 31(3): 310-315 (in Chinese).
[13] 吉洪蕾, 陈仁良, 李攀. 适用于直升机飞行力学分析的三维空间大气紊流模型[J]. 航空学报, 2014, 35(7): 1825-1835. JI H L, CHEN R L, LI P. A model of three-dimensional-field atmospheric turbulence for helicopter flight dynamics analysis[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1825-1835 (in Chinese).
[14] 吉洪蕾, 陈仁良, 李攀. 用于直升机在大气紊流中的旋翼状态反馈控制[J]. 航空学报, 2017, 38(5): 120541. JI H L, CHEN R L, LI P. Rotor-state feedback control for helicopter in atmospheric turbulence[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120541 (in Chinese).
[15] ROPER D M, OWEN I, PADFIELD G D, et al. Integrating CFD and piloted simulation to quantify ship-helicopter operating limits[J]. The Aeronautical Journal, 2006, 110(1109): 419-428.
[16] CLEMENT W F. Development of a real-time simulation of a ship-correlated airwake model interfaced with a rotorcraft dynamic model: AIAA-1992-4149[R]. Reston, VA: AIAA, 1992: 127-137.
[17] 茅坪, 金晓明, 印佼. 舰载直升机机舰配合过程仿真建模技术研究[J]. 系统仿真学报, 2013, 25(6): 1376-1381. MAO P, JIN X M, YIN J. Study on simulation modeling technologies of helicopter/ship interaction procedure for ship-based helicopters[J]. Journal of System Simulation, 2013, 25(6): 1376-1381 (in Chinese).
[18] LEE D, SEZERUZOL N, HORN J F, et al. Simulation of helicopter shipboard launch and recovery with time-accurate airwakes[J]. Journal of Aircraft, 2005, 42(2): 448-461.
[19] FORREST J S, OWEN I, PADFIELD G D, et al. Ship-helicopter operating limits prediction using piloted flight simulation and time-accurate airwakes[J]. Journal of Aircraft, 2012, 49(4): 1020-1031.
[20] 吉洪蕾, 陈仁良, 李攀. 耦合POD重构舰面流场的直升机舰面起降数值模[J]. 航空学报, 2016, 37(3):771-779. JI H L, CHEN R L, LI P. Numerical simulation of a helicopter operating in a reconstructed ship airwake based on POD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 771-779 (in Chinese).
[21] 李攀, 陈仁良. 直升机急拉杆机动飞行仿真建模与验证[J]. 航空学报, 2010, 31(12): 2315-2323. LI P, CHEN R L. Formulation and validation of a helicopter model for pull-up maneuver simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2315-2323 (in Chinese).
[22] JI H L, CHEN R L, LI P. Rotor-state feedback control to alleviate pilot workload for helicopter shipboard operations[J]. Journal of Guidance Control & Dynamics, 2017(2):1-12.
[23] MCRUER D T, GRAHAM D, KRENDEL E S, et al. Human pilot dynamics in compensatory systems: AFFDL-TR-65-15[R]. Ohio: Air Force Flight Dynamics Laboratory,1965.
[24] MCRUER D T, KRENDEL E S. Mathematical models of human pilot behavior: AGARDograph 188[R]. Paris: Advisory Group on Aerospace Research and Development, 1974.
[25] HESS R A, ZEYADA Y, HEFFLEY R K. Modeling and simulation for helicopter task analysis[J]. Journal of the American Helicopter Society, 2002, 47(2): 243-252.
[26] HESS R A. Simplified technique for modeling piloted rotorcraft operations near ships[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1339-1349.
[27] HESS R A, GAO C. A generalized algorithm for inverse simulation applied to helicopter maneuvering flight[J]. Journal of the American Helicopter Society, 1993, 38(4): 3-15.
[28] CARICO G D, FANG R S, GEYER W P, et al. Helicopter/ship qualification testing:RTO AG-300[R]. Neuilly sur Seine: NATO Research and Technology Organization, 2003.
[29] SHAMPINE L F, GORDON M K. Computer solution of ordinary differential equations—The initial value problem[M]. San Francisco, CA: W. H. Freeman & Co., 1976.
[30] NATOPS. Flight manual navy model SH-60B helicopter: A1-H60BB-NFM-000[S]. Maryland: Naval Air Systems Command, 2006.
文章导航

/