Relative navigation of the non-cooperative space target is a key technology for the missions such as on-orbit servicing and close-range surveillance. Recent research shows that a weak observation exists along the range direction when the line-of-sight angle is used as the measurement information for medium range relative navigation, and double line-of-sight relative navigation is an effective solution to this problem. This paper studies an autonomous double line-of-sight measurement relative navigation method based on the formation of dual chase spacecraft. The overall architecture and detailed algorithms for the double line-of-sight measurement relative navigation method are introduced. Based on the geometric configuration among the dual chase spacecraft and the target, the propagation equation for the errors in the double line-of-sight measurement method is developed and its in-fluencing factors are analyzed. The configuration of the dual chaser formation and its influence on the performance of the method is also discussed. Numerical simulations verifies the relevant conclusions obtained.
[1] WOFFINDEN D C. Angles-only navigation for autonomous orbital rendezvous[D]. Logan, UT:Utah State University, 2008.
[2] WOFFINDEN D C, GELLER D K. Navigating the road to autonomous orbital rendezvous[J]. Journal of Spacecraft and Rockets, 2007, 44(4):898-909.
[3] CHARI R J V. Autonomous orbital rendezvous using angles-only navigation[D]. Cabridge, MA:Massachusetts Institute of Technology, 2001.
[4] GELLER D K, KLEIN I. Angles-only navigation state observability during orbital proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1976-1983.
[5] 尤岳, 王华, CHRISTOPHE P, 等. 基于SRUKF的偏心仅测角相对导航方法[J]. 宇航学报, 2016, 37(11):1312-1322. YOU Y, WANG H, CHRISTOPHE P, et al. Square root unscented Kalman filter-based angles-only relative navigation using camera offset[J]. Journal of Astronautics, 2016, 37(11):1312-1322(in Chinese).
[6] GELLER D K, PEREZ A. Initial relative orbit determination for close-in proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(9):1833-1841.
[7] GONG B C, GELLER D K, LUO J J. Initial relative orbit determination analytical covariance and performance analysis for proximity operations[J]. Journal of Spacecraft and Rockets, 2016, 53(5):822-835.
[8] 刘涛, 解永春.非合作目标交会相对导航方法研究[J]. 航天控制, 2006, 24(2):48-53. LIU T, XIE Y C. A Study on relative navigation for spacecraft rendezvous with a noncooperative target[J]. Aerospace Control, 2006, 24(2):48-53(in Chinese).
[9] WOFFINDEN D C, GELLER D K. Optimal orbital rendezvous maneuvering for angles-only navigation[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1382-1387.
[10] GRZYMISCH J, FICHTER W. Observability criteria and unobservable maneuvers for in-orbit bearings-only navigation[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1250-1259.
[11] 龚柏春, 罗建军, 袁建平, 等.基于可观测性分析的单测角相对导航与闭环制导技术[J]. 航空学报, 2015, 36(7):2411-2419. GONG B C, LUO J J, YUAN J P, et al. Angles-only relative navigation integrated with close-loop guidance technology based on observability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2411-2419(in Chinese).
[12] 杨海燕, 汤国建. 双目视觉导航信息的可观测性分析[J]. 宇航学报, 2013, 34(2):207-213. YANG H Y, TANG G J. Observability analysis of binocular vision navigation information[J]. Journal of Astronautics, 2013, 34(2):207-213(in Chinese).
[13] SEGAL S, CARMI A, GURFIL P. Stereovision-based estimation of relative dynamics between noncooperative satellites:Theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2):568-584.
[14] CHEN T, XU S J. Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous[J]. Acta Astronautica, 2010, 67(1-2):122-134.
[15] 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32(6):1084-1091. WANG K, CHEN T, XU S J. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1084-1091(in Chinese).
[16] 翟光, 张景瑞, 张尧. 基于多空间机器人系统的非合作目标联合定位技术[J]. 机器人, 2013, 35(2):249-256. ZHAI G, ZHANG J R, ZHANG Y. Co-localization of non-cooperative targets based on multiple space robot system[J]. Robot, 2013, 35(2):249-256(in Chinese).
[17] 高学海, 梁斌, 潘乐, 等. 高轨非合作目标多视线分布式相对导航方法[J]. 宇航学报, 2015, 36(3):292-299. GAO X H, LIANG B, PAN L, et al. Distributed relative navigation of GEO non-cooperative target based on multiple line-of-sight measurements[J]. Journal of Astronautics, 2015, 36(3):292-299(in Chinese).
[18] CHEN T, XU S J. Approach guidance with double-line-of-sight-measuring navigation constraint for autonomous rendezvous[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):678-687.
[19] 梁斌, 高学海, 潘乐, 等. 编队接近非合作目标PSO多脉冲制导方法[J]. 哈尔滨工业大学学报, 2015, 47(10):7-12. LIANG B, GAO X H, PAN L, et al. Formation proximity of GEO non-cooperative target based on PSO multiple impulses guidance law[J]. Journal of Harbin Institute of Technology, 2015, 47(10):7-12(in Chinese).
[20] CRASSIDIS J L, MARKLEY F L, CHENG Y. Survey of nonlinear attitude estimation methods[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):12-28.