材料工程与机械制造

扑翼飞行器具有弹性阻尼扑动机构的能耗对比分析与研究

  • 张威 ,
  • 刘光泽 ,
  • 张博利
展开
  • 1. 中国民航大学 航空工程学院, 天津 300300;
    2. 中国民航航空地面特种设备研究基地, 天津 300300;
    3. 中国民航大学 基础实验中心, 天津 300300

收稿日期: 2017-12-22

  修回日期: 2018-01-28

  网络出版日期: 2018-05-28

基金资助

国家自然科学基金委员会与中国民航局联合资助项目(U1533103);中央高校基本科研业务费(3122017049)

Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism

  • ZHANG Wei ,
  • LIU Guangze ,
  • ZHANG Boli
Expand
  • 1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China;
    2. Aviation Ground Special Equipment Research Base, Tianjin 300300, China;
    3. Basic Experiment Center, Civil Aviation University of China, Tianjin 300300, China

Received date: 2017-12-22

  Revised date: 2018-01-28

  Online published: 2018-05-28

Supported by

National Natural Science Foundation of China, Civil Aviation Administration of China (U1533103); the Fundamental Research Funds for the Central Universities (3122017049)

摘要

以"Sparrow"微小仿生扑翼飞行器(FWMAV)为基础,提出了3种带弹性元件的扑动机构构型。对原构型和3种弹性构型进行的理论研究及仿真试验发现,安装有弹性元件的仿生扑翼机构不仅可以在很大程度上减小电机输入的峰值转矩,而且能凭借减小峰值转矩的最优构型提高能量利用率。同时,原模型在翅翼下扑阶段所产生的冲击力大而上扑阶段所产生的冲击力小,电机因负载不均在快速运转时易受冲击。引入弹性元件后,可有效减小电机所受到的冲击力,降低机体材料的冲击及疲劳损伤,延长其使用寿命;对峰值力的优化还可以降低噪声,减小飞行时被发现的几率,提高其在战场环境中的生存率。这将为扑翼飞行器由理论向工程应用过渡提供基础。

本文引用格式

张威 , 刘光泽 , 张博利 . 扑翼飞行器具有弹性阻尼扑动机构的能耗对比分析与研究[J]. 航空学报, 2018 , 39(9) : 421966 -421979 . DOI: 10.7527/S1000-6893.2018.21966

Abstract

Three flexible flapping mechanism configurations are herein proposed for the model of "Sparrow" Flapping Wing Micro Air Vehicle (FWMAV). Analytical research and simulation tests on the original model and the three proposed configurations unveil that an FWMAV with a flexible flapping mechanism can greatly reduce the peak torque of motor input, and then improve energy efficiency. In addition, when running rapidly without the flexible system, the motor of a FWMAV is found easy to get shocked by uneven loads due to a smaller impact force at the stage of down flapping and a bigger one at the stage of up flapping. When an elastic component is introduced into the vehicle, the impact force effected on the motor and the flapping mechanism reduces effectively. The service life of the vehicle can be consequently prolonged. It is also shown that the proposed flexible flapping mechanisms have lower noises, meaning that the survival rate of the vehicles in the battlefield environment will be raised up. This study lays a foundation for applications of the FWMAV model.

参考文献

[1] KHAN Z A, AGAWAL S K. Force and moment characterization of flapping wings for micro air vehicle application[C]//American Control Conference, 2005:1515-1520.
[2] 张锐, 周超英, 汪超, 等. 蜻蜓非对称扑动时的气动特性[J]. 航空学报,2017, 38(12):106-118. ZHANG R, ZHOU C Y, WANG C, et al. Aerodynamic characteristics of dragonfly in asymmetric flapping[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):106-118(in Chinese).
[3] YAFENG Z, BIFENG S, YIZHE Z. Development of flapping wing micro air vehicle[C]//26th International Congress of the Aeronautical Sciences. Alaska:International Council of the Aeronautical Sciences, 2008:14-19.
[4] GERDES J W, GUPTA S K, WILKERSON S A. A review of bird-inspired flapping wing miniature air vehicle designs[C]//ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Montreal:American Society of Mechanical Engineers, 2012:57-67.
[5] 陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12):2668-2681. CHEN L L,SONG B F,SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2668-2681(in Chinese).
[6] 贺红林, 周翔. 柔性扑翼非定常涡格法气动计算的改进与实现[J]. 航空学报, 2010, 31(6):1121-1126. HE H L, ZHOU X. Improvement and implementation of unsteady vortex lattice method for aerodynamic computation of flexible flapping wing[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1121-1126(in Chinese).
[7] 肖天航, 昂海松, 周新春. 柔性扑翼非定常流场的数值计算方法[J]. 航空学报, 2009, 30(6):990-999. XIAO T H, ANG H S, ZHOU X C. Numerical calculation method for unsteady flow field of flapping flapping wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):990-999(in Chinese).
[8] PORNSIN-SIRIRAK T N, TAI Y C, NASSEF H, et al. Titanium-alloy MEMS wing technology for a micro aerial vehicle application[J]. Sensors and Actuators A:Physical, 2001, 89(1):95-103.
[9] 夏宇阳. 仿生扑翼飞行器的翅型设计及其实验研究[D]. 南京:东南大学, 2004:19-20. XIA Y Y. Wing shape design and experimental study of bionic flapping wing aircraft[D]. Nanjing:Southeast University, 2004:19-20(in Chinese).
[10] ZHANG W, HU C. Solar cell as wings of different sizes for flapping-wing micro air vehicles[J]. International Journal of Micro Air Vehicles, 2016, 8(4):209-220.
[11] PEREZROSADO A, GEHLHAR R D, NOLEN S, et al. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles[J]. Smart Materials and Structures, 2015, 24(6):065042.
[12] PEREZ-ROSADO A, BRUCK H, GUPTA S K. Integrating solar cells into flapping wing air vehicles for enhanced flight endurance[J]. Journal of Mechanisms and Robotics, 2016, 8(5):051006.
[13] JEAN J, WANG A, BULOVIC' V. In situ vapor-deposited parylene substrates for ultra-thin, lightweight organic solar cells[J]. Organic Electronics, 2016, 31:120-126.
[14] WOOD R J. The First takeoff of a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008, 24(2):341-347.
[15] MA K Y, WOOD R J. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132):603-607.
[16] GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight[M]. Heidelberg:Springer, 2013:90-100.
[17] YANG L J. Practical flapping mechanisms for 20 cm-span micro air vehicles[J]. International Journal of Micro Air Vehicles, 2015, 7(2):181-202.
[18] KARÁSEK M, ROMANESCU I, PREUMONT A. Pitch moment generation and measurement in a robotic hummingbird[J]. International Journal of Micro Air Vehicles, 2013, 5(4):299-309.
[19] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird:a tailless flapping wing micro air vehicle[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:American Institute of Aeronautics and Astronautics, 2013:6-12.
[20] FINIO B M, SHANG J K, WOOD R J. Body torque modulation for a microrobotic fly[C]//IEEE International Conference on Robotics and Automation, 2009:3449-3456
[21] 黄鸣阳, 肖天航, 昂海松. 多段柔性变体扑翼飞行器设计[J]. 航空动力学报, 2016, 31(8):1838-1844. HUANG M Y, XIAO T H, ANG H S. Design of an ornithopter with multisection flexible morphing wings[J]. Journal of Aerospace Power, 2016, 31(8):1838-1844(in Chinese).
[22] 昂海松. 微型飞行器的设计原则和策略[J]. 航空学报, 2016, 37(1):69-80. ANG H S. Design principles and strategies of micro air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):69-80(in Chinese).
[23] 段文博, 昂海松, 肖天航. 主动变形扑翼飞行器的设计和风洞测力试验研究[J]. 航空学报, 2013, 34(3):474-486. DUAN W B, ANG H S, XIAO T H. Design and wind tunnel test of active morphing wing ornithopter[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):474-486(in Chinese).
[24] 叶以楠, 张卫平. 基于OpenCV的微型扑翼飞行器视觉伺服系统[J]. 计算机与现代化, 2015(4):90-93. YE Y N, ZHANG W P. A visual servo system of FMAV based on openCV[J]. Computer and Modernization, 2015(4):90-93(in Chinese).
[25] 张伟, 张卫平, 柯希俊, 等. 扑翼微飞行器紫外激光加工技术[J]. 半导体光电, 2015, 36(4):657-660. ZHANG W, ZHANG W P, KE X J, et al. UV laser processing technology of flapping-wing micro air vehicles[J]. Semiconductor Optoelectronics, 2015, 36(4):657-660(in Chinese).
[26] 魏榛, 贾立超, 杨基明. 一种平行曲柄连杆扑翼机构的设计、优化与实现[J]. 力学与实践, 2011, 33(2):62-66. WEI Z, JIA L C, YANG J M. Design, optimization and implementation of a parallel crank-rocker flapping mechanism[J]. Mechanics and Practice, 2011, 33(2):62-66(in Chinese).
[27] 周凯, 方宗德, 曹雪梅, 等. 单曲柄双摇杆扑翼驱动机构的优化设计[J]. 航空动力学报, 2008, 23(1):184-188. ZHOU K, FANG Z D, CAO X M, et al. Optimization design for single-crank and double-rocker kind of driving mechanism of FMAV[J]. Journal of Aerospace Power, 2008, 23(1):184-188(in Chinese).
[28] 张亚锋, 宋笔锋, 马红萍, 等. 仿生扑翼机构的优化设计[J]. 机械设计与研究, 2008(4):23-25. ZHANG Y F, SONG B F, MA H P, et al. Optimization design of flapping-wing mechanism[J]. Mechanical Design and Research, 2008(4):23-25(in Chinese).
[29] ZHANG T, ZHOU C, ZHANG X, et al. Design, analysis, optimization and fabrication of a flapping wing MAV[C]//International Conference on Mechatronic Science, Electric Engineering and Computer, 2011:2241-2244.
[30] KHATAIT J P, MUKHERJEE S, SETH B. Compliant design for flapping mechanism:A minimum torque approach[J]. Mechanism and Machine Theory, 2006, 41(1):3-16.
[31] TANTANAWAT T, KOTA S. Design of compliant mechanisms for minimizing input power in dynamic applications[J]. Journal of Mechanical Design, 2007, 129(10):1064-1075.
[32] WU J H, SUN M. Wing kinematics in a hovering dronefly minimize power expenditure[J]. Journal of Insect Science, 2014, 14(1):159-167.
[33] MADANGOPAL R, KHAN Z A, AGRAWAL S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics[J]. Journal of Mechanical Design, 2005, 127(4):867-874.
[34] KEENNONM T,GRASMEYEJ M. Development of the black widow and microbat mavs and a vision of the future of mav design[C]//AIAA International Air and Space Symposium and Exposition, 2003:14-17.
[35] PORNSIN-SIRIRAK T N, LEE S W, NASSEF H, et al. MEMS wing technology for a battery-powered ornithopter[C]//The Thirteenth International Conference on MICRO Electro Mechanical Systems, 2000:799-804.
[36] ISHⅡ A, HEIBECK M, BLAZEJEWSKI M, et al. Design and implementation of a biologically inspired swimming robot an EPS@ISEP 2014 spring project[C]//International Conference on Technological Ecosystems for Enhancing Multiculturality, 2015:219-226.
[37] DECROON G C H E, PERCIN M, REMES B D W, et al. The delfly:Design, aerodynamics, and artificial intelligence of a flapping wing robot[M]. Netherlands:Springer Publishing Company, Incorporated, 2015:13-14.
[38] DE CROON G C, GROEN M A, DE W C, et al. Design, aerodynamics and autonomy of the DelFly[J]. Bioinspiration & Biomimetics, 2012, 7(2):025003.
[39] 陈文元. 微型扑翼式仿生飞行器[M]. 上海:上海交通大学出版社, 2010:55-57. CHEN W Y. Flapping wing biomimetic aircraft[M]. Shanghai:Shanghai Jiao Tong University press, 2010:55-57(in Chinese).
[40] NAKATA T, LIU H, TANAKA Y, et al. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle[J]. Bioinspiration & Biomimetics, 2011, 6(4):045002.
[41] BRADSHAW N, LENTINK D. Aerodynamic and Structural Dynamic Identification of a Flapping Wing Micro Air Vehicle[C]//26th AIAA Applied Aerodynamics Conference, 2008:6248.
[42] NGUYEN Q-V, CHAN WL, DEBIASI M. An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering[C]//Proceedings of the International Society for Optical Engineering. Beijing:Society of Photo-Optical Instrumentation Engineers, 2015:94290U-94290U-94211.
[43] ELLINGTON C. The aerodynamics of hovering insect flight. Ⅲ. Kinematics[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 1984, 305(1122):41-78.
[44] SUN M, TANG J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. Journal of Experimental Biology, 2002, 205(1):55-70.
[45] SUN M, LAN S L. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering[J]. Journal of Experimental Biology, 2004, 207(11):1887-1901.
[46] MADANGOPAL R, KHAN Z A, AGRAWAL S K. Energetics-based design of small flapping-wing micro air vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4):433-438.
[47] BAEK S S, MA K Y, FEARING R S. Efficient resonant drive of flapping-wing robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009:2854-2860.
[48] BAEK S S, GARCIA BERMUDEZ F L, FEARING R S. Flight control for target seeking by 13 gram ornithopter[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011:2674-2681.
[49] YANG L J, HSU C K, HO J Y, et al. Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle[J]. Sensors and Actuators A:Physical, 2007, 139(1):95-103.
[50] DAVID C T. Optomotor control of speed and height by free-flying Drosophila[J]. Journal of Experimental Biology, 1979, 82:389.
文章导航

/