电子电气工程与控制

临近空间动能拦截器神经反演姿态控制器设计

  • 张涛 ,
  • 李炯 ,
  • 王华吉 ,
  • 雷虎民 ,
  • 叶继坤
展开
  • 1. 空军工程大学 研究生院, 西安 710051;
    2. 空军工程大学 防空反导学院, 西安 710051

收稿日期: 2017-12-20

  修回日期: 2018-05-28

  网络出版日期: 2018-05-28

基金资助

国家自然科学基金(61773398,61703421)

Attitude control of near space kinetic kill vehicle based on neural network backtepping control

  • ZHANG Tao ,
  • LI Jiong ,
  • Wang Huaji ,
  • LEI Humin ,
  • YE Jikun
Expand
  • 1. Graduate College, Air Force Engineering University, Xi'an 710051, China;
    2. Air and Missile Defense college, Air Force Engineering University, Xi'an 710051, China

Received date: 2017-12-20

  Revised date: 2018-05-28

  Online published: 2018-05-28

Supported by

National Natural Science Foundation of China (61773398,61703421)

摘要

为满足临近空间动能拦截器姿态控制快速性、准确性和鲁棒性的要求,设计了一种自适应神经反演姿态控制器。首先,建立了姿控发动机侧喷干扰模型,并推导了包含质心漂移、参数摄动和外界干扰的三通道强耦合模型;其次,设计了自适应神经反演姿态控制器,为提高控制精度,采用径向基函数(RBF)神经网络对各个通道的不确定项进行估计和补偿,并基于最小学习参数的思想,将神经网络学习参数拟合为一个参数,提高了RBF计算效率,保证了估计的实时性。最后,采用伪速率(PSR)脉冲调制器将设计的连续控制律转化为脉冲控制律,实现了拦截器的变推力控制,并克服了脉冲脉宽调制(PWPF)调制器相位滞后问题。数字仿真表明,所设计的控制器收敛速度快,控制精度高,对强扰动具有鲁棒性。

本文引用格式

张涛 , 李炯 , 王华吉 , 雷虎民 , 叶继坤 . 临近空间动能拦截器神经反演姿态控制器设计[J]. 航空学报, 2018 , 39(8) : 321953 -321953 . DOI: 10.7527/S1000-6893.2018.21953

Abstract

To meet the requirement for fast, accurate and robust attitude control of near space kinetic kill vehicles, an adaptive neural network backstepping attitude controller is designed. First, a model for lateral jet interaction is established, and a three-channel strong coupling model including centroid drift, parameter perturbation and external disturbance is developed. Second, an adaptive neural backstepping attitude controller is designed. Then, to improve control precision, the RBF neural network is adopted to estimate and compensate the uncertainties in each channel, and the neural network learning parameter is fitted as a parameter based on the theory of minimum learning parameters to improve Radial Basis Function (RBF) calculation efficiency and estimation instantaneity. Finally, a PSeudo Rate (PSR) modulator is designed to convert the continuous control law into the pulse control law, so as to realize control of KKV digital variable thrust. The simulation shows that the controller has fast convergence speed, high control precision and robustness to strong disturbance.

参考文献

[1] 翟岱亮, 雷虎民, 李炯,等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016, 37(11):3467-3567. ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3467-3567(in Chinese).
[2] 周黎妮,朱启超,李坡.美军常规快速全球打击计划发展现状与趋势[J].现代防御技术,2015,43(2):1-5. ZHOU L N, ZHU Q C, LI P. Current development and trend of conventional prompt global strike of U.S.[J].Modern Defence Technology, 2015,43(2):1-5(in Chinese).
[3] LIU X, LIU W, ZHAO Y. Navier-Stokes predictions of dynamic stability derivatives for air-breathing hypersonic vehicle[J]. Acta Astronautica, 2016, 118:262-285.
[4] GUO J, ZHANG T, ZHOU J, et al. The three dimensional guidance system design of terminal attack phase for exo-atmospheric kill vehicle[J]. Optik-International Journal for Light and Electron Optics, 2017, 130(18):1158-1167.
[5] 杨旭. 动能拦截器姿控发动机机器姿态控制研究[D]. 北京:北京理工大学,2016. YANG X. Research on attitude control thruster and attitude tracking control of kinetic kill vehicle[D].Beijing:Beijing Institute of Technology,2016(in Chinese).
[6] 朱战霞, 韩沛, 陈鹏. 基于非线性终端滑模的动能拦截器末制导律设计[J]. 西北工业大学学报, 2013, 31(2):233-238. ZHU Z X, HAN P, CHEN P. Design of nomlinear terminal SMGL(Sliding-Mode Guidance law) for KKV (Kinetic Kill Vehicle)[J]. Journal of Northwestern Polytechnical University, 2013, 31(2):233-238(in Chinese).
[7] 张大元, 雷虎民, 邵雷, 等. 临近空间高超声速目标拦截弹弹道规划[J]. 国防科技大学学报,2015,37(3):91-97. ZHANG D Y, LEI H M, SHAO L, et al. Interceptor trajectory programming foe near space hypersonic target[J]. Journal of National University of Defense Technology, 2015,37(3):91-97(in Chinese).
[8] 梁海燕. 反临近空间高超声速飞行器导引头及关键技术分析[J]. 飞航导弹,2013,34(10):61-63. LIANG H Y. Analysis on the seeker and key Technologies of Anti-Near-Space Hypersonic vehicle[J]. Aerodynamic Missile Journal, 2013,3(10):61-63(in Chinese).
[9] 余英,侯明善,张斯哲,等. 侧窗探测自适应制导研究[J].西北工业大学学报,2016,34(2):287-293. YU Y, HOU M S, ZHANG S Z, et al. A new adaptive proportional navigation based on side windows detection[J]. Journal of Northwestern Polytechnical University. 2016,34(2):287-293(in Chinese).
[10] 王洋, 周军, 赵斌, 等. 侧窗探测动能拦截器末端轨控方案[J]. 固体火箭技术,2016,39(4):588-593. WANG Y, ZHOU J, ZHAO B, et al. Orbit control scheme of the terminal course of side window detection kinetic kill vehicle[J]. Journal of Solid Rocket Technology, 2016, 39(4):588-593(in Chinese).
[11] PHILIP C C,ERIC M Q. Entry vehicle control system design for the Mars science laboratory[J]. Journal of Spacecraft and Rockets,2006,43(2):324-329
[12] TOBIN C A,BONG W. Pulse-modulate control synthesis for a flexible spacecraft[J]. Guidance,1989,13(6):1014-1022.
[13] 支强, 蔡远利.动能杀伤器侧窗定向机制分析及建模[J]. 西安交通大学学报,2012,46(1):91-96 ZHI Q, CAI Y L. On side window orientation of kinetic kill vehicle[J]. Journal of Xi'an Jiaotong University, 2012,46(1):91-96(in Chinese).
[14] 王庆超, 李达. 基于反馈线性化的动能拦截器姿态控制研究[J]. 宇航学报,2005,26(3):358-362. WANG Q C, LI D. A study of interceptor attitude control system based on feedback linearization[J].Journal of Astronautics,2005,26(3):358-362(in Chinese).
[15] YAO Y, YANG B Q, HE F H, et al. Attitude control of missile via fliess expansion[J]. IEEE Transactions on Control Systems Technology, 2008, 16(5):959-970
[16] 杨宝庆, 姚郁, 贺风华.大气层外拦截器开关式姿态控制律设计[J]. 哈尔滨工业大学学报,2010,42(1):5-8. YANG B Q, YAO Y, HE F H. Design of on-off attitude control law based on model predictive control[J]. Journal of Harbin Institute of Technology, 2010,42(1):5-8(in Chinese).
[17] ZHU Z, XIA Y, FU M. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. International Journal of Robust and Nonlinear Control,2011,21(6):686-702.
[18] 王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报,2017, 38(3):189-201. WANG X, GUO J, TANG S J, et al. Robust nonsingular terminal sliding mode backstepping control for air breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):189-201(in Chinese).
[19] 杨旭, 姚晓先, 张皎, 等. 基于自适应鲁棒反演的固体动能拦截器姿态跟踪控制[J]. 固体火箭技术,2016,39(5):715-723. YANG X, YAO X X, ZHANG J, et al. Attitude tracking of KKV based on adaptive backstepping sliding mode control[J]. Journal of Solid Rocket Technology, 2016,39(5):715-723(in Chinese).
[20] 张天平,施袅锨,沈启坤,等. 具有未建模动态的自适应神经网络动态面控制[J]. 控制理论与应用, 2013,30(4):475-482. ZHANG T P, SHI X C, SHEN Q K. Adaptive neural network dynamic surface control with unmodeled dynamics[J]. Control Theory & Application, 2013,30(4):475-482(in Chinese).
[21] 叶东,屠园园,孙兆伟. 面向非沿轨迹成像的切比雪夫神经网络滑模姿态控制[J]. 航空学报,2015, 36(9):3092-3104. YE D, TU Y Y, SUN Z W. Sliding mode control for nonparallel-ground-track imaging using Chebyshev neural network[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(9):3092-3104(in Chinese).
[22] RAN M, WANG Q, HOU D, et al. Backstepping design of missile guidance and control based on adaptive fuzzy sliding mode control[J]. Chinese Journal of Aeronautics, 2014, 27(3):634-642.
[23] MING Y, WANG L J, TENG M. Neural network based terminal sliding mode control for WMRs affected by an augmented ground friction with slippage effect[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(3):498-506.
[24] WANG H Q, LIU X P, LIU K F, et al. Adaptive neural control for a general class of pure-feedback stochastic nonlinear systems[J]. Neurocomputing, 2014, 135:348-356.
[25] NAVABI M,RANGRAZ H. Comparing optimum operation of pulse width-pulse frequency and pseudo-rate modulators in spacecraft attitude control subsystem employing thruster[C]//Proceedings of 6th International Conference on Recent Advances in Space Technologies,2013:625-630.
[26] 王清, 杨宝庆, 马克茂. 一种优化PWPF调节器在动能拦截器末制导中的应用研究[J]. 宇航学报, 2005, 26(5):576-580. WANG Q, YANG B Q, MA K M. PWPF optimizing design and its application research to terminal guidance of kinetic killing vehicle[J]. Journal of Astronautics, 2005, 26(5):576-580(in Chinese).
[27] 段美君, 周荻, 程达林. 基于有限时间理论的临近空间拦截器末制导律PWPF调节器研究[J]. 航空学报,2018,39(1):321481. DUAN M J, ZHOU D, CHENG D L. Research of terminal guidance law and PWPF modulator for near space interceptor based on finite time theory[J].Acta Aeronauitica et Astronautica Sinica, 2018, 39(1):321481(in Chinese).
[28] 雷虎民. 导弹制导与控制原理[M].北京:国防工业出版社,2009. LEI H M. Theory of guidance and control for missile[M]. Beijing:National Defense Industry Press, 2009(in Chinese).
[29] 杨宝庆. 基于预测控制的大气层外KKV制导控制规律研究[D]. 哈尔滨:哈尔滨工业大学,2009. YANG B Q. Research on guidance and control law for exo-atmospheric KKV based on predictive control[D]. Harbin:Harbin Institute of Technology,2009(in Chinese).
[30] 易涛. 超低轨道挠性卫星非线性姿态跟踪控制方法研究[D]. 哈尔滨:哈尔滨工业大学,2014. YI T. Research on Nonlinear attitude tracking control methods of ultra-low-orbit flexible satellite[J]. Harbin:Harbin Institute of Technology,2013(in Chinese).
[31] BU X W, WU X Y, CHEN Y X, et al. Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems[J]. International Journal of Control, Automation, and Systems, 2015, 13(3):595-602.
文章导航

/