为建立端羟基聚丁二烯(HTPB)推进剂的损伤本构模型,采用宏细观相结合的方法,将其细观损伤机理视为初始微裂纹偏折扩展的过程。首先,基于微裂纹稀疏估计理论,推导了Abdel-Tawab宏观本构方程中损伤映射张量的一般形式,其物理意义是将真实应力空间中各向异性材料的多轴加载,映射为等效应力空间中各向同性材料的更为复杂的多轴加载。其次,基于能量释放率和最大周向应力准则,分析了三维币形裂纹偏折扩展的情形,进一步采用两步等效法,将偏折扩展后的裂纹等效为币形裂纹。最后,基于Schapery裂纹模型,推导了微裂纹稳定扩展的速率方程。数值结果表明,建立的模型能够有效地反映材料损伤的应变率、温度依赖性和各向异性特征。
A constitutive model for the Hydroxyl Terminated PolyButadiene (HTPB) propellant with damage is developed by using a macro-micro coupled method. The micro-damage mechanism was considered as the kinking growth of microcracks. First, based on the dilute estimation theory of microcracks, the general form of the damage mapping tensor in the Abdel-Tawab's macro-constitutive equation was derived, which maps the multiaxial loading on an anisotropic material in the true stress space into more complicated multiaxial loading on an isotropic material in the effective stress space. Second, the kinking growth of a 3D penny crack was analyzed based on the energy release rate criterion and maximum circumferential stress criterion, and a penny microcrack was used to approximate the kinked one by a two-step equivalent method. Finally, a rate equation for stable growth of a microcrack was derived based on the Schapery's crack tip model. Numerical results indicate that the model can effectively reflect the anisotropic damage feature of the material, and the dependence of damage on strain rate and temperature.
[1] 许进升. 复合推进剂热粘弹性本构模型实验及数值仿真研究[D]. 南京:南京理工大学, 2013:1. XU J S. Experimental and numerical research on thermo-viscoelastic constitutive model of composite propellant[D]. Nanjing:Nanjing University of Science & Technology, 2013:1(in Chinese).
[2] 王建祥, 陈建康, 白树林. 基于损伤演化的共混/填充高聚物体系本构关系研究进展[J]. 复合材料学报, 2002, 19(6):1-7. WANG J X, CHEN J K, BAI S L. Advances in study of constitutive relations of blended/filled polymeric composites considering damage evolution[J]. Acta Materiae Compositae Sinica, 2002, 19(6):1-7(in Chinese).
[3] XU J S, CHEN X, WANG H L, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures, 2014, 51(18):3209-3217.
[4] YUN K S, PARK J B, JUNG G D, et al. Viscoelastic constitutive modeling of solid propellant with damage[J]. International Journal of Solids and Structures, 2016, 80:118-127.
[5] PARK S W, SCHAPERY R A. A viscoelastic constitutive model for particulate composites with growing damage[J]. International Journal of Solids and Structures, 1997, 34(8):931-947.
[6] OZUPEK S, BECKER E B. Constitutive equations for solid propellants[J]. Journal of Engineering Materials and Technology, 1997, 119(2):125-132.
[7] JUNG G D, YOUN S K. A nonlinear viscoelastic constitutive model of solid propellant[J]. International Journal of Solids and Structures, 1999, 36(25):3755-3777.
[8] JUNG G D, YOUN S K, KIM B K. A three-dimensional nonlinear viscoelastic constitutive model of solid propellant[J]. International Journal of Solids and Structures, 2000, 37(34):4715-4732.
[9] CHEN J K, HUANG Z P, MAI Y W. Constitutive relation of particulate-reinforced viscoelastic composite materials with debonded microvoids[J]. Acta Materialia, 2003, 51(12):3375-3384.
[10] CHEN J K, HUANG Z P, YUAN M. A constitutive theory of particulate-reinforced viscoelastic materials with partially debonded microvoids[J]. Computational Materials Science, 2008, 41(3):334-343.
[11] TOHGO K, ITOH Y, SHIMAMURA Y. A constitutive model of particulate-reinforced composites taking account of particle size effects and damage evolution[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(2):313-321.
[12] XU F, ARAVAS N, SOFRONIS P. Constitutive modeling of solid propellant materials with evolving microstructural damage[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5):2050-2073.
[13] HUR J Y, PARK J B, JUNG G D, et al. Enhancements on a micromechanical constitutive model of solid propellant[J]. International Journal of Solids and Structures, 2016, 87:110-119.
[14] 彭威, 郑坚, 白鸿柏, 等. 复合推进剂微裂纹损伤本构模型研究[J]. 固体火箭技术, 2003, 26(1):33-37. PENG W, ZHENG J, BAI H B, et al. Study on micro-cracking damage constitutive model of HTPB composite solid propellant[J]. Journal of Solid Rocket Technology, 2003, 26(1):33-37(in Chinese).
[15] TUSSIWAND G S, SAOUMA V, TERZENBACH R, et al. Fracture mechanics of composite solid rocket propellant grains:Material testing[J]. Journal of Propulsion and Power, 2009, 25(1):60-73.
[16] ABDEL-TAWAB T K, WELTSMAN Y J. A coupled viscoelasticity/damage model with application to swirl-mat composites[J]. International Journal of Damage Mechanics, 1998, 7(4):351-380.
[17] GRECHKA V, KACHANOV M. Effective elasticity of fractured rocks:A snapshot of the work in progress[J]. Geophysics, 2006, 71(6):45-58.
[18] DUBOIS F, CHAZAL C, PETIT C. Modelling of crack growth initiation in a linear viscoelastic material[J]. Journal of Theoretical & Applied Mechanics, 1999, 37(2):207-222.
[19] 任中俊, 万玲. 复杂应力下脆性岩石材料的微裂纹损伤特性[J]. 应用力学学报, 2013, 30(1):7-12. REN Z J, WAN L. Investigation of the damage for microcracks weakened brittle rocks subjected to arbitrary three-dimensional stress[J]. Chinese Journal of Applied Mechanics, 2013, 30(1):7-12(in Chinese).
[20] FRANCOIS B, DASCALU C. A two-scale time-dependent damage model based on non-planar growth of micro-cracks[J]. Journal of the Mechanics & Physics of Solids, 2010, 58(11):1928-1946.
[21] SEVOSTIANOV I, KACHANOV M. On elastic compliances of irregularly shaped cracks[J]. International Journal of Fracture, 2002, 114(3):245-257.
[22] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media. Part I. Theoretical development[J]. International Journal of Fracture, 1975, 11(1):141-159.
[23] PERSSON B N, BRENER E A. Crack propagation in viscoelastic solids[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(3):036123.
[24] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media. Part Ⅱ. Approximate methods of analysis[J]. International Journal of Fracture, 1975, 11(3):369-388.
[25] MULIANA A, KHAN K A. A time-integration algorithm for thermo-rheologically complex polymers[J]. Computational Materials Science, 2008, 41(4):576-588.
[26] 顾志旭, 郑坚, 彭威, 等. 复合固体推进剂黏弹性微裂纹损伤本构模型[J]. 复合材料学报, 2018,35(5):1203-1210. GU Z X, ZHENG J, PENG W, et al. A viscoelastic constitutive model of solid composite propellants with micro-cracking damage[J]. Acta Materiae Compositae Sinica, 2018, 35(5):1203-1210(in Chinese).
[27] MURAKAMI S. Continuum damage mechanics:A continuum mechanics approach to the analysis of damage and fracture[M]. Dordrech:Springer, 2012:44-48.