材料工程与机械制造

GH4169合金蠕变疲劳行为的有限元模拟及寿命预测

  • 姚萍 ,
  • 王润梓 ,
  • 郭素娟 ,
  • 张显程
展开
  • 华东理工大学 承压系统与安全教育部重点实验室, 上海 200237

收稿日期: 2018-04-11

  修回日期: 2018-04-28

  网络出版日期: 2018-05-15

基金资助

国家自然科学基金(51725503);上海市自然科学基金(18ZR1408900)

Finite element simulations of creep-fatigue behavior and life assessment of GH4169 alloy

  • YAO Ping ,
  • WANG Runzi ,
  • GUO Sujuan ,
  • ZHANG Xiancheng
Expand
  • Ministry of Education Key Laboratory of Pressure Systems and Safety, East China University of Science and Technology, Shanghai 200237, China

Received date: 2018-04-11

  Revised date: 2018-04-28

  Online published: 2018-05-15

Supported by

National Natural Science Foundation of China (51725503); Shanghai Natural Science Foundation (18ZR1408900)

摘要

考虑蠕变-疲劳损伤,对部件材料进行合理的循环变形描述和准确的寿命预测,是保证航空发动机等高温设备长周期安全运行需要解决的关键问题之一。基于大型有限元软件ABAQUS,采用组合Chaboche随动强化准则和Voce各向同性硬化准则的循环弹塑性本构模型,叠加应变强化的蠕变本构模型,对GH4169合金在蠕变-疲劳载荷下伴有应力松弛的循环变形行为进行了准确的有限元模拟。同时,将Wang等最新修正的基于逐周次概念的蠕变-疲劳损伤模型进行了有限元移植,结合有限元模拟所得的循环应力、应变状态,实现了对GH4169合金蠕变-疲劳寿命的准确预测。研究结果将为进一步实现对航空发动机关键部件精确的寿命预测提供理论基础和技术手段。

本文引用格式

姚萍 , 王润梓 , 郭素娟 , 张显程 . GH4169合金蠕变疲劳行为的有限元模拟及寿命预测[J]. 航空学报, 2018 , 39(12) : 422193 -422193 . DOI: 10.7527/S1000-6893.2018.22193

Abstract

Accurate life assessment and reasonable description of cyclic deformation of the material and related components considering the creep-fatigue damage of the material is an important issue for long period safety of the aero-engine under cyclic thermal-mechanical loading conditions. Based on the finite element code ABAQUS, a cyclic elasto-plastic constitutive model combining the Chaboche nonlinear kinematic hardening rule and Voce's isotropic hardening rule is firstly employed. Then with the help of an additional strain-hardening creep constitutive model, the creep-fatigue cyclic deformation behavior of the GH4169 alloy including the peak stress relaxation period is simulated accurately. Based on the simulated cyclic stress-strain state with the finite element method, accurate life prediction of the GH4169 alloy are accurately realized by numerically implementing Wang's modified creep-fatigue damage model on the basis of the cycle-by-cycle concept. Our result will provide theoretical basis and technical support for further realization of accurate prediction of the creep-fatigue life of key components of the aero-engine.

参考文献

[1] 闫明, 孙志礼, 杨强, 等. 基于等效试验的蠕变-热疲劳寿命预测方法[J]. 航空学报, 2008, 29(4):943-947. YAN M, SUN Z L, YANG Q, et al. A creep-thermal fatigue life prediction method based on equivalent test[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):943-947(in Chinese).
[2] 胡殿印, 王荣桥, 侯贵仓. 涡轮构件疲劳-蠕变寿命的试验方法[J]. 推进技术, 2010, 31(3):331-334. HU D Y, WANG R Q, HOU G C. Experiment on fatigue/creep life of turbine components[J]. Journal of Propulsion Technology, 2010, 31(3):331-334(in Chinese).
[3] 陈立杰, 江铁强, 谢里阳. 涡轮叶片蠕变-疲劳交互作用下寿命预测方法综述[J]. 航空制造技术, 2004(12):61-64. CHEN L J, JIANG T Q, XIE L Y. Overview on life prediction methods of turbine blade for creep/fatigue interaction[J]. Aeronautical Manufacturing Technology, 2004(12):61-64(in Chinese).
[4] 饶寿期. 航空发动机的高温蠕变分析[J]. 航空发动机, 2004, 30(1):10-13. RAO S Q. Analysis of high-temperature creep of aeroengines[J]. Aeroengine, 2004, 30(1):10-13(in Chinese).
[5] 田长生, 乔生儒, 陶冶, 等. GH36合金在疲劳和蠕变交互作用下的失效寿命[J]. 航空学报, 1987, 8(11):632-636. TIAN C S, QIAO S R, TAO Y, et al. The failure life of GH36 alloy in fatigue and creep interaction[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(11):632-636(in Chinese).
[6] ZHANG X C, TU S T, XUAN F Z. Creep-fatigue endurance of 304 stainless steels[J]. Theoretical and Applied Fracture Mechanics, 2014, 71:51-66.
[7] WANG P, CUI L, SCHOLZ A, et al. Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents[J]. International Journal of Fatigue, 2014, 67:220-227.
[8] WU X J. A model of nonlinear fatigue-creep (dwell) interactions[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3):032101-032106.
[9] KANG G Z. Ratchetting:Recent progresses in phenomenon observation, constitutive modeling and application[J]. International Journal of Fatigue, 2008, 30:1448-1472.
[10] CHABOCHE J L. A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24(10):1642-1693.
[11] EVANS H E. A model of strain hardening during high-temperature creep[J]. The Philosophical Magazine:A Journal of Theoretical Experimental and Applied Physics, 2008, 28(1):227-230.
[12] ROBINSON E L. Effect of temperature variation on the long-time rupture strength of steels[J]. Transactions on ASME, 1952, 74:777-781.
[13] PRIEST R H, ELLISON E G. A combined deformation map-ductility exhaustion approach to creep-fatigue analysis[J]. Materials Science and Engineering, 1980, 49(1):7-17.
[14] HALES R. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance[J]. Fatigue & Fracture of Engineering Materials & Structures, 1983, 6(2):121-135.
[15] SKELTON R P. The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components[J]. Materials at High Temperatures, 2013, 30(3):183-201.
[16] TAKAHASHI Y. Effect of cyclic loading on subsequent creep behaviour and its implications in creep-fatigue life assessment[J]. Materials at High Temperatures, 2015, 32(5):492-501.
[17] WANG R Z, ZHANG X C. A modified strain energy density exhaustion model for creep-fatigue life prediction[J]. International Journal of Fatigue, 2016, 90:12-22.
[18] JEONG C Y, BAE J C, KANG C S. Normalized creep-fatigue life prediction model based on the energy dissipation during hold time[J]. Materials Science and Engineering, 2007, 460:195-203.
[19] WANG R Z, ZHANG X C. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650℃ based on cycle-by-cycle concept[J]. International Journal of Fatigue, 2017, 97:114-123.
[20] MARILENA C B, CRISTIAN T, FRéDéRIC B, et al. Analysis of sheet metal formability through isotropic and kinematic hardening models[J]. European Journal of Mechanics A/Solids, 2011, 30:532-546.
[21] OSTERGREN W J. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue[J]. Journal of Testing and Evaluation, 1976, 4(5):327-339.
[22] BRINKMAN C R. High-temperature time-dependent fatigue behaviour of several engineering structural alloys[J]. International Materials Reviews, 1985, 30(1):235-258.
文章导航

/