综述

风洞试验绳牵引并联支撑技术研究进展

  • 王晓光 ,
  • 林麒
展开
  • 厦门大学 航空航天学院, 厦门 361005

收稿日期: 2018-01-30

  修回日期: 2018-05-08

  网络出版日期: 2018-05-11

基金资助

国家自然科学基金(11472234,11702232,11072207,50475099);中央高校基本科研业务费专项资金(20720180071)

Progress in wire-driven parallel suspension technologies in wind tunnel tests

  • WANG Xiaoguang ,
  • LIN Qi
Expand
  • School of Aerospace Engineering, Xiamen University, Xiamen 361005, China

Received date: 2018-01-30

  Revised date: 2018-05-08

  Online published: 2018-05-11

Supported by

National Natural Science Foundation of China (11472234,11702232, 11072207,50475099); the Fundamental Research Funds for the Central Universities (20720180071)

摘要

新型飞行器的研制越发强调先进的飞行性能,这对风洞试验模型支撑技术提出了高的要求,为扩展风洞试验的能力,迫切需要研究新型的智能支撑技术。绳牵引并联支撑是基于机器人技术的一种新型机构,具有刚度较大,动态性能良好等优点,为风洞试验提供了一种新的手段。首先,全面论述了绳系支撑在风洞试验中的应用,并给出动态分析;进一步根据绳牵引并联支撑技术的特点,将其分为可实现受迫运动的冗余约束支撑,以及可实现受迫+自由运动的欠约束支撑;其次,重点阐述了冗余约束与欠约束两类支撑系统的若干关键技术问题及其研究进展;最后,指出绳牵引并联支撑技术的发展方向是具有可重构性和智能化。可为绳牵引并联支撑技术在风洞试验中的工程应用提供一定的理论指导与技术支持。

本文引用格式

王晓光 , 林麒 . 风洞试验绳牵引并联支撑技术研究进展[J]. 航空学报, 2018 , 39(10) : 22064 -022064 . DOI: 10.7527/S1000-6893.2018.22064

Abstract

The design of new aircraft highlights advanced flight performance of aircraft, and thus presents higher requirements for technologies for model suspension in wind tunnel tests. To further extend the capability of wind tunnel tests, new intellectual wind tunnel suspension technologies are in imperative demand. The wire-driven parallel suspension system is a new mechanism based on parallel robotic technologies with the advantages of larger stiffness and better dynamic properties. This paper gives a comprehensive review of application of wire suspension systems in wind tunnel tests, and a dynamic analysis of the systems. According to different constraints of wire-driven parallel suspension technologies, they are classified into redundantly constrained and under-constrained suspension systems, which can fulfill forced motion and forced/free motion by actively adjusting the wire length, respectively. Then, the key scientific technological issues and advances of both systems are expounded. It is noted that wire-driven parallel suspension technologies are expected to become more reconfigurable and intellectual in the future. Our study can provide guidance and reference to application of wire-driven parallel suspension technologies in wind tunnels.

参考文献

[1] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社, 2010:1-5. LI Z F. Wind tunnel special tests technology[M]. Beijing:Aviation Industry Press, 2010:1-5(in Chinese).
[2] 张平来,马戎,常兴华,等. 虚拟飞行中气动/运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(10):376-415. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flight control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(10):376-415(in Chinese).
[3] OWENS D, BRANDON J, CROOM M, et al. Overview of dynamic test techniques for flight dynamics research[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, VA:AIAA, 2006.
[4] GUO L, ZHU M, NIE B, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2):602-610.
[5] 赵忠良, 吴军强, 李浩, 等. 高机动导弹气动/运动/控制耦合的风洞虚拟飞行试验技术[J]. 空气动力学学报, 2016, 34(1):14-19. ZHAO Z L, WU J Q, LI H, et al. Wind tunnel based virtual flight testing of aerodynamics flight dynamics and flight control for high maneuver missile[J]. Acta Aerodynamica Sinica, 2016, 34(1):14-19(in Chinese).
[6] PATTINSON J, LOWENBERG M H, GOMAN M G. Multi-degree-of-freedom wind-tunnel maneuver rig for dynamic simulation and aerodynamic model identification[J]. Journal of Aircraft, 2013, 50(2):551-566.
[7] HÜBNER A, BERGMANN A, LOESER T, et al. Experimental and numerical investigations of unsteady force and pressure distributions of moving transport aircraft configurations[C]//47th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2009:91.
[8] 中国航空学会. 2012-2013航空科学技术学科发展报告[R]. 北京:科学技术出版社, 2014:6-8. Chinese Society of Aeronautics and Astronautics. Reports on advances in aeronautical science and technology 2012-2013[R]. Beijing:Science and Technology Press, 2014:6-8(in Chinese).
[9] WILLIAMS R L, XIN M, BOSSCHER P. Contour-crafting-cartesian cable robot system concepts:Workspace and stiffness comparisons[C]//ASME 32nd Mechanisms and Robotics Conference. New York:ASME, 2008.
[10] DUAN B Y. A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis[J]. Mechatronics, 1999, 9(1):53-64.
[11] VONASEK V, SASKA M, PREUCIL L. Motion planning for a cable driven parallel multiple manipulator emulating a swarm of MAVs[C]//IEEE 9th Workshop on Robot Motion and Control. Piscataway, NJ:IEEE Press, 2013:13-18.
[12] REED W H, ABBOTT F T. A new "free-flight" mount system for high-speed wind-tunnel flutter models[C]//Proceedings of Symposium on Aeroelastic and Dynamic Modeling Technology, 1963:169-206.
[13] BENNETT R M, FARMER M G, MOHRT R L, et al. Wind-tunnel technique for determining stability derivatives from cable-mounted models[J]. Journal of Aircraft, 1978, 15(5):304-310.
[14] RIVERA J A, FLORANCE J R. Contributions of transonic dynamics tunnel testing to airplane flutter clearance:AIAA-2000-1768[R]. Reston, VA:AIAA, 2000.
[15] COLE S R, NOLL T E, PERRY B. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5):820-831.
[16] GRIFFIN S, CROOKS R, MOLE P. Vane support system (VSS)-A new generation wind tunnel model support system:AIAA-1991-0398[R]. Reston, VA:AIAA, 1991.
[17] LAWRENCE F C, MILLS B H. Status update of the AEDC virtual flight testing development program:AIAA-2002-0168[R]. Reston, VA:AIAA, 2002.
[18] MAGILL J C, WEHE S D. Initial test of a wire suspension mount for missile virtual flight testing:AIAA-2002-0169[R]. Reston, VA:AIAA, 2002.
[19] MAGILL J C, CATALDI P, MORENCY J R, et al. Active yaw control with a wire suspension system for dynamic wind tunnel testing:AIAA-2005-1295[R]. Reston, VA:AIAA, 2005.
[20] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3):624-633.
[21] LAMBERT T J, VUKASINOVIC B, GLEZER A. A six degrees of freedom dynamic wire-driven traverse[J]. Aerospace, 2016, 3(2):1-16.
[22] LAMBERT T J. Aerodynamic control of flow dynamics coupled to a free-flight axisymmetric body[D]. Georgia:Georgia Institute of Technology, 2016:1-50.
[23] LAMBERT T J, VUKASINOVIC B, GLEZER A. Aerodynamic flow control of wake dynamics coupled to a moving bluff body[C]//8th AIAA Flow Control Conference. Reston, VA:AIAA, 2016.
[24] MICHAEL H, TIMOTHY W, MATTHEW M, et al. A review of basic research and development programs conducted in the LENS facilities in hypervelocity flows:AIAA-2012-0469[R]. Reston, VA:AIAA, 2012.
[25] Test facilities[EB/OL]. (2013-12-31)[2018-01-10]. http://tsagi.com/experimental_base/.
[26] LAFOURCADE P, LLIBRE M, REBOULET C. Design of a parallel wire-driven manipulator for wind tunnels[C]//Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, 2002:187-194.
[27] LAFOURCADE P, LLIBRE M. First steps toward a sketch-based design methodology for wire-driven manipulators[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ:IEEE Press, 2003:143-148.
[28] LAFOURCADE P. Study of parallel manipulators with cables, design of an active suspension for wind tunnel[D]. Paris:ENSAE, 2004:22-29.
[29] BRUCKMANN T, HILLER M, SCHRAMM D. An active suspension system for simulation of ship maneuvers in wind tunnels[M]//New Trends in Mechanism Science. Amsterdam:Springer, 2010:537-544.
[30] STURM C, WILDAN L, BRUCKMANN T. Wire robot suspension systems for wind tunnels[M]//Wind Tunnels and Experimental Fluid Dynamics Research. London:InTech, 2011:29-50.
[31] LIN Q, ZHENG Y Q, LIU X W. Modeling and control of a wire-driven parallel support system with large attack angles in low speed wind tunnels[C]//25th Congress of the International Council of the Aeronautical Sciences, 2006:3-8.
[32] 郑亚青, 林麒, 刘雄伟, 等. 用于低速风洞飞行器气动导数试验的绳牵引并联支撑系统[J]. 航空学报, 2009, 30(8):1549-1554. ZHENG Y Q, LIN Q, LIU X W, et al. On wire-driven parallel suspension systems for static and dynamic derivatives of the aircraft in low-speed wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1549-1554(in Chinese).
[33] 林麒, 梁斌, 郑亚青. 低速风洞绳牵引并联机器人支撑系统的模型姿态与振荡控制研究[J]. 实验流体力学, 2008, 22(3):75-79. LIN Q, LIANG B,ZHENG Y Q. Control on model attitude and oscillation by wire driven parallel manipulator support system for low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3):75-79(in Chinese).
[34] XIAO Y W, LIN Q, ZHENG Y Q, et al. Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel[J]. Chinese Journal of Aeronautics, 2010, 23(4):393-400.
[35] 冀洋锋, 林麒, 胡正红, 等. 基于绳系并联机器人支撑系统的SDM标模动导数试验可行性研究[J]. 航空学报, 2017, 38(11):121330. JI Y F, LIN Q, HU Z H, et al. Feasibility investigation on dynamic stability derivatives test of SDM model with wire-driven parallel robot suspension system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):121330(in Chinese).
[36] WANG X G, PENG M, HU Z, et al. Feasibility investigation of large-scale model suspended by cable-driven parallel robot in hypersonic wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(13):2375-2383.
[37] 胡正红, 彭苗娇, 冀洋锋, 等. 高超声速风洞WDPR支撑尖锥模型应用可行性分析[J]. 北京航空航天大学学报, 2017, 43(11):2293-2301. HU Z H, PENG M J, JI Y F, et al. Feasibility analysis of WDPR support cone model in hypersonic wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11):2293-2301(in Chinese).
[38] 沈礼敏, 沈志宏, 黄勇. 低速风洞大迎角张线式支撑系统[J]. 流体力学实验与测量, 1998(4):16-22. SHEN L M, SHEN Z H, HUANG Y. A wire type-support system for high angle of attack test in low speed wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 1998(4):16-22(in Chinese).
[39] 刘大伟, 陈德华, 尹陆平, 等. 2.4米跨声速风洞条带悬挂支撑试验技术研究[J]. 空气动力学学报, 2016, 34(3):354-361. LIU D W, CHEN D H, YIN L P, et al. Investigation on the cane cable suspension support system in the 2.4m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(3):354-361(in Chinese).
[40] LI Q, LIU D, CHEN D, et al. Numerical investigation on the support interference of vane support system in high speed wind tunnels[C]//IEEE Fifth International Conference on Intelligent Systems Design and Engineering Applications (ISDEA). Piscataway, NJ:IEEE Press, 2014:641-644.
[41] 李强, 刘大伟, 陈德华. 高速风洞中条带悬挂支撑干扰研究[J]. 实验流体力学, 2017, 31(1):100-108. LI Q, LIU D W, CHEN D H. Study on the support interference of vane suspension support system in high speed wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1):100-108(in Chinese).
[42] 郭洪涛, 路波, 余立, 等.某战斗机高速全模颤振风洞试验研究[J]. 航空学报, 2012, 33(10):1765-1771. GUO H T, LU B, YU L, et al. Investigation on full-model flutter of a certain fighter plane in high-speed wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1765-1771(in Chinese).
[43] LV B B, LU B, YANG X H, et al. The floating suspension system in the transonic wind tunnel for full-model flutter test[M]//Advanced Materials Research. Switzerland:Trans Tech Publications, 2013:328-334.
[44] 路波, 吕彬彬, 罗建国, 等.跨声速风洞全模颤振试验技术[J]. 航空学报, 2015, 36(4):1086-1092. LU B, LYU B B, LUO J G, et al.Wind tunnel technique for transonic full-mode flutter test[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092(in Chinese).
[45] 胡静, 李潜. 风洞虚拟飞行技术初步研究[J]. 实验流体力学, 2010, 24(1):95-99. HU J, LI Q.Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):95-99(in Chinese).
[46] 王崇利, 孙牧原, 王维强, 等. FL-2风洞民机张线支撑系统研制[J]. 气动研究与实验, 2006, 23(2):41-44. WANG C L, SUN M Y, WANG W Q, et al. Research of a civil aircraft wire suspension system in FL-2 wind tunnel[J].Aerodynamic Research and Experiment, 2006, 23(2):41-44(in Chinese).
[47] 王磊, 王延奎, 邓学蓥, 等. 张线支撑系统的同步测控技术及其应用[J].飞机设计, 2013, 33(1):1-5. WANG L, WANG Y K, DENG X Y, et al.Synchronous measurement and control technology of wire suspension system and its applications[J]. Aircraft Design, 2013, 33(1):1-5(in Chinese).
[48] 于卫青, 刘高计, 李通, 等. 弹箭模型高速风洞张线支撑干扰试验方案研究[J]. 弹箭与制导学报, 2014(5):144-147. YU W Q, LIU G J, LI T, et al. Research on the missiles hanging trace interference test in high-speed wind tunnel[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014(5):144-147(in Chinese).
[49] MING A, HIGUCHI T. Study on multiple degree of freedom positioning mechanisms using wires (Part 1):Concept, design and control[J]. International Journal of the Japan Society for Precision Engineering, 1994, 28(2):131-138.
[50] VERHOEVEN R. Analysis of the workspace of tendon-based Stewart platforms[D]. Duisburg-Essen:University of Duisburg-Essen, 2004:17-34.
[51] 刘雄伟, 郑亚青, 林麒. 应用于飞行器风洞试验的绳牵引并联机构技术综述[J]. 航空学报, 2004, 25(4):393-400. LIU X W, ZHENG Y Q, LIN Q. Overview of wire-driven parallel kinematic manipulators for aircraft wind tunnels[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):393-400(in Chinese).
[52] 王晓光, 马少宇, 彭苗娇, 等. 绳牵引并联机器人弹性变形对动平台位姿精度的影响[J]. 计算力学学报, 2016, 33(3):306-312. WANG X G, MA S Y, PENG M J, et al. Influence of elastic deformation on pose precision of moving platform for wire-driven parallel robot[J]. Chinese Journal of Computational Mechanics, 2016, 33(3):306-312(in Chinese).
[53] MERLET J P, ALEXANDRE J. The forward kinematics of cable-driven parallel robots with sagging cables[M]//Cable-Driven Parallel Robots. Berlin:Springer, 2015:3-15.
[54] VARZIRI M, NOTASH L. Kinematic calibration of a wire-actuated parallel robot[J]. Mechanism and Machine Theory, 2007, 42(8):960-976.
[55] MUSTAFA S K, YANG G, YEO S H, et al. Self-calibration of a biologically inspired 7 DOF cable-driven robotic arm[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(1):66-75.
[56] BORGSTROM P H, JORDAN B J, STEALEY M J, et al. Nims-pl:A cable-driven robot with self-calibration capabilities[J]. IEEE Transactions on Robotics, 2009, 25(5):1005-1015.
[57] BAYANI H, MASOULEH M T, KALHOR A. An experimental study on the vision-based control and identification of planar cable-driven parallel robots[J]. Robotics and Autonomous Systems, 2016, 75:187-202.
[58] WANG X G, HU Y B, LIN Q. Workspace analysis and verification of cable-driven parallel mechanism for wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 2017, 231(6):1012-1021.
[59] STUMP E, KUMAR V. Workspaces of cable-actuated parallel manipulators[J]. ASME Journal of Mechanical Design, 2006, 128(1):159-167.
[60] MERLET J P. Wire-driven parallel robot:Open issues[M]//Romansy 19-Robot Design, Dynamics and Control. Berlin:Springer, 2013:3-10.
[61] NGUYEN D Q, GOUTTEFARDE M. On the improvement of cable collision detection algorithms[M]//Cable-Driven Parallel Robots. Berlin:Springer, 2015:29-40.
[62] BERTI A, MERLET J P, CARRICATO M. Workspace analysis of redundant cable-suspended parallel robots[M]//Cable-Driven Parallel Robots. Berlin:Springer, 2015:41-53.
[63] HAN Y, COURTEILLE E, DEBLAISE D. Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity[J]. Mechanism and Machine Theory, 2015, 85:64-81.
[64] WANG X G, MA S Y, LIN Q, Hybrid pose/tension control based on stiffness optimization of cable-driven parallel mechanism in wind tunnel test[C]//IEEE 2nd International Conference on Control, Automation and Robotics. Piscataway, NJ:IEEE Press, 2016.
[65] NEWMAN D, KARNIADAKIS G E. Simulations of flow over a flexible cable:A comparison of forced and flow-induced vibration[J]. Journal of Fluids and Structures, 1996, 10(5):439-453.
[66] KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7-8):813-851.
[67] KIM W J, PERKINS N C. Two-dimensional vortex-induced vibration of cable suspensions[J]. Journal of Fluids and Structures, 2002, 16(2):229-245.
[68] HIROSHI T. Aerodynamics of cables[C]//5th International Symposium on Cable Dynamics, 2003:11-21.
[69] POZOS E A, FLORES R, GÓMEZ R. Parametric study of stay cables of a bridge under simulated spatially correlated turbulent wind[J]. Latin American Journal of Solids and Structures, 2016, 13(8):1450-1463.
[70] 陈锋. 索结构流固耦合风振响应分析[D]. 上海:上海交通大学, 2010:54-82. CHEN F. Wind-induced vibration analysis on fluid-structure interaction for cable structures[D]. Shanghai:Shanghai Jiao Tong University, 2010:54-82(in Chinese).
[71] 彭苗娇, 王晓光, 林麒. 风洞试验WDPR支撑牵引绳与模型耦合振动研究[J]. 振动工程学报, 2017, 30(1):140-148. PENG M J, WANG X G, LIN Q. Coupled vibration between cables and aircraft model of WDPR in wind tunnel test[J]. Journal of Vibration Engineering, 2017, 30(1):140-148(in Chinese).
[72] FANG S, FRANITZA D, TORLO M, et al. Motion control of a tendon-based parallel manipulator using optimal tension distribution[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3):561-568.
[73] CHELLAL R, CUVILLON L, LAROCHE E. A kinematic vision-based position control of a 6-DoF cable-driven parallel robot[M]//Cable-Driven Parallel Robots. Berlin:Springer, 2015:213-225.
[74] 訾斌, 段宝岩, 仇原鹰. 基于干扰观测器的Fuzzy-PID控制及应用研究[J]. 系统工程与电子技术, 2006(6):892-895. ZI B, DUAN B Y, QIU Y Y. Fuzzy-PID control based on disturbance observer and its application[J]. Systems Engineering and Electronics, 2006(6):892-895(in Chinese).
[75] LIU J, WANG X G, WANG Y Q, et al. Continuous terminal sliding mode control of a 6-DOF wire-driven parallel robot[C]//IEEE International Conference on Robot and Biomimetics. Piscataway, NJ:IEEE Press, 2017.
[76] WEN B L, SONG H Y, YANG G. Optimization of tension distribution for cable-driven manipulators using tension-level index[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2):676-83.
[77] BORGSTROM P H, BORGSTROM N P, STEALEY M J, et al. Design and implementation of NIMS3D, a 3-D cabled robot for actuated sensing applications[J]. IEEE Transactions on Robotics, 2009, 25(2):325-339.
[78] BRUCKMANN T, POTT A, HILLER M. Calculating force distributions for redundantly actuated tendon-based stewart platforms[M]//Advances in Robot Kinematics. Berlin:Springer, 2006:403-412.
[79] BEHZADIPOUR S, KHAJEPOUR A. Design of reduced dof parallel cable-based robots[J]. Mechanism and Machine Theory, 2004, 39:1051-1065.
[80] 孙岩, 张征宇, 黄诗捷, 等. 风洞试验中模型迎角视觉测量技术研究[J]. 航空学报, 2013, 34(1):1-7. SUN Y, ZHANG Z Y, HUANG S J, et al. Vision measurement technology research for model angle og attack in wind tunnel tests[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(1):1-7(in Chinese).
[81] JIA Z, MA X, LIU W, et al. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel[J]. Sensors, 2014, 14(12):23933-23953.
[82] THOMAS W, CHARLES B. Design and development of a real-time model attitude measurement system for hypersonic facilities[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2005.
[83] 黄叙辉, 张征宇, 尹疆. 高速风洞试验模型姿态角的视频测量及不确定度研究[J]. 实验流体力学, 2013(5):83-87. HUANG X H, ZHANG Z Y, YIN J. Videogrammetry for models attitude and its uncertainty in high-speed wind tunnel testing[J]. Journal of Experiments in Fluid Mechanics, 2013(5):83-87(in Chinese).
[84] 殷春平. 基于机器视觉的运动目标姿态测量之研究与实现[D]. 厦门:厦门大学, 2013:78-91. YIN C P.Study and realization on attitude measurement of moving objects based on machine vision[D]. Xiamen:Xiamen University, 2013:78-91(in Chinese).
[85] MACCORMICK J. Stochastic algorithms for visual tracking:Probabilistic modelling and stochastic algorithms for visual localisation and tracking[M]. New York:Springer-Verlag Inc., 2012.
[86] 赵强. 基于RGB-D相机的运动平台实时导航定位模型与方法研究[D]. 北京:中国科学院大学, 2017:1-6 ZHAO Q.Research on real time navigation and localization model and method based on RGB-D camera[D]. Beijing:University of Chinese Academy of Sciences, 2017:1-6(in Chinese).
[87] HUANG A S, BACHRACH A, HENRY P, et al. Visual odometry and mapping for autonomous flight using an RGB-D camera[M]//Robotics Research. Springer International Publishing, 2017:235-252.
[88] Free flight under tension[EB/OL]. (2006-02-14)[2018-05-01]. https://www.onera.fr/en/news/free-flight-under-tension.
[89] ABBASNEJAD G, CARRICATO M. Direct geometrico-static problem of under-constrained cable-driven parallel robots with n cables[J]. IEEE Transactions on Robotics, 2015, 31(2):468-478.
[90] CARRICATO M, MERLET J P. Stability analysis of under-constrained cable-driven parallel robots[J]. IEEE Transactions on Robotics, 2013, 29(1):288-296.
[91] BERTI A, MERLET J P, CARRICATO M. Solving the direct geometrico-static problem of under-constrained cable-driven parallel robots by interval analysis[J]. The International Journal of Robotics Research, 2016, 35(6):723-739.
[92] 桑建, 陈志平, 张巨勇, 等. 一种欠约束丝牵引并联机构工作空间的分析方法[J]. 机电工程, 2010, 27(8):52-55. SANG J, CHEN Z P, ZHANG J Y, et al. Analytic method of the workspace of an incompletely restrained wire-driven parallel mechanism[J]. Journal of Mechanical and Electrical Engineering, 2010, 27(8):52-55(in Chinese).
[93] 江晓玲, 郑亚青. 不完全约束绳牵引并联机器人的微分平坦性分析[J]. 机械设计与研究, 2010, 26(3):19-22. JIANG X L, ZHENG Y Q. Analysis of differential flatness of incompletely restrained wire-driven parallel robots[J]. Machine Design and Research, 2010, 26(3):19-22(in Chinese).
[94] BARTOLI G, CLUNI F, GUSELLA V, et al. Dynamics of cable under wind action:Wind tunnel experimental analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5):259-273.
[95] YAMAMOTO M, YANAI N, MOHRI A. Trajectory control of incompletely restrained parallel-wire-suspended mechanism based on inverse dynamics[J]. IEEE Transactions on Robotics, 2004, 20(5):840-850.
[96] HEYDEN T, WOERNLE C. Dynamics and flatness-based control of a kinematically determined cable suspension manipulator[J]. Multibody System Dynamics, 2006, 16(2):155-177.
[97] HWANG S W, BAK J H, YOON J, et al. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots[J]. Journal of Mechanical Science and Technology, 2016, 30(12):5689-5697.
[98] BARBAZZA L, ZANOTTO D, ROSATI G, et al. Design and optimal control of an under-actuated cable-driven micro-macro robot[J]. IEEE Robotics and Automation Letters, 2017, 2(2):896-903.
[99] ZHANG N, SHANG W W. Dynamic trajectory planning of a 3-DOF under-constrained cable-driven parallel robot[J]. Mechanism and Machine Theory, 2016, 98:21-35.
[100] NGUYEN D Q, GOUTTEFARDE M, COMPANY O, et al. On the analysis of large-dimension reconfigurable suspended cable-driven parallel robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2014:5728-5735.
[101] NGUYEN D Q, GOUTTEFARDE M. Study of reconfigurable suspended cable-driven parallel robots for airplane maintenance[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2014:1682-1689.
[102] GAGLIARDINI L, CARO S, GOUTTEFARDE M, et al. A reconfiguration strategy for reconfigurable cable-driven parallel robots[C]//IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2015:1613-1620.
文章导航

/