固体力学与飞行器总体设计

基于可行域调整的多相材料结构拓扑优化设计

  • 俞燎宏 ,
  • 荣见华 ,
  • 唐承铁 ,
  • 李方义
展开
  • 1. 长沙理工大学 汽车与机械工程学院, 长沙 410114;
    2. 宜春学院 物理科学与工程技术学院, 宜春 336000;
    3. 长沙理工大学 工程车辆安全性设计与可靠性技术湖南省重点实验室, 长沙 410114

收稿日期: 2018-01-17

  修回日期: 2018-02-09

  网络出版日期: 2018-05-07

基金资助

国家自然科学基金(11772070,11372055);江西省教育厅科技项目(GJJ170893)

Multi-phase material struclural topology optimization design based on feasible domain adjustment

  • YU Liaohong ,
  • RONG Jianhua ,
  • TANG Chengtie ,
  • LI Fangyi
Expand
  • 1. School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
    2. School of Physical Science and Technology, Yichun University, Yichun 336000, China;
    3. Hunan Province Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle, Changsha University of Science and Technology, Changsha 410114, China

Received date: 2018-01-17

  Revised date: 2018-02-09

  Online published: 2018-05-07

Supported by

National Natural Science Foundation of China (11772070,11372055); Science Foundation of Jiangxi Educational Committee (GJJ170893)

摘要

针对多相材料结构柔顺度拓扑优化问题及其存在多个局部优化解的情况,提出一种新的多相材料结构柔顺度拓扑优化问题的求解方法, 并研究其获得多个局部优化解及寻找较好的优化解的能力。基于材料属性有理近似 (RAMP)模型,引入可行域调整技术,构建多相材料结构拓扑优化模型及近似优化模型。提出一种改进的交替主动相算法,该算法将多相材料结构拓扑近似优化模型分解为多个含2个主动相材料体积约束的系列二元相拓扑优化子模型,并利用光滑化对偶算法进行优化求解。与现有方法相比,采用多个不同的优化初始拓扑,提出的方法可找到更优的多相材料结构拓扑, 且为多相材料结构拓扑优化的多样性设计提供了一种有价值的思路与方法。

本文引用格式

俞燎宏 , 荣见华 , 唐承铁 , 李方义 . 基于可行域调整的多相材料结构拓扑优化设计[J]. 航空学报, 2018 , 39(9) : 222023 -222039 . DOI: 10.7527/S1000-6893.2018.22023

Abstract

For the multi-phase material structural compliance topology optimization problem and the existence of multiple local optimization solutions, a new solution method is proposed, and the ability of the method to get multiple local optimization solutions and to find a better optimization solution are investigated. Based on the Rational Approximation of Material Properties (RAMP) model, the feasible domain adjustment technology is introduced to construct a model for multi-phase material structural topology optimization model and its approximate model. A modified alternating active-phase algrithom is proposed, in which the multi-phase material topology optimization problem is divided into some two-phase topology optimization sub-problems, which may include two real material volume constraints. And the sub-problems are solved by the smooth dual algorithm. Compared with the existed methods, the proposed method can obtain a different local optimal topology starting from a different initial topology, and can also obtain a better local optimal multi-phase material topology by using various initial topologies. And the proposed method gives a valuable idea and a multiple design approach to solve the multi-material structural topology optimization problem.

参考文献

[1] THOMSEN J. Topology optimization of structures composed of one or two materials[J]. Structural Optimization, 1992, 5(1-2):108-115.
[2] YIN L, ANANTHASURESH G K. Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme[J]. Structural and Multidisciplinary Optimization, 2001, 23(1):49-62.
[3] 孙士平, 张卫红. 多相材料微结构多目标拓扑优化设计[J]. 力学学报, 2006, 38(5):633-638. SUN S P, ZHANG W H. Multiple objective topology optimal design of multiphase microstructures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5):633-638(in Chinese).
[4] 孙士平, 张卫红. 多相材料结构拓扑优化的周长控制方法研究[J]. 航空学报, 2006, 27(5):963-968. SUN S P,ZHANG W H. Investigation of perimeter control methods for structural topology optimization with multiphase materials[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):963-968(in Chinese).
[5] GAO T, ZHANG W. A mass constraint formulation for structural topology optimization with multiphase materials[J]. International Journal for Numerical Methods in Engineering, 2011, 88(8):774-796.
[6] STEGMANN J, LUND E. Discrete material optimization of general composite shell structures[J]. International Journal for Numerical Methods in Engineering, 2005, 62(14):2009-2027.
[7] HVEJSEL C F, LUND E. Material interpolation schemes for unified topology and multi-material optimization[J]. Structural & Multidisciplinary Optimization, 2011, 43(6):811-825.
[8] BLASQUES J P, STOLPE M. Multi-material topology optimization of laminated composite beam cross sections[J]. Composite Structures, 2012, 94(11):3278-3289.
[9] BLASQUES J P. Multi-material topology optimization of laminated composite beams with eigenfrequency constraints[J]. Composite Structures, 2014, 111(1):45-55.
[10] HENRICHSEN S R, LINDGAARD E, LUND E. Robust buckling optimization of laminated composite structures using discrete material optimization considering "worst" shape imperfections[J]. Thin-Walled Structures, 2015, 94(9):624-635.
[11] YAN J, DUAN Z, LUND E, et al. Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model[J]. Acta Mechanica Sinica, 2016, 32(3):430-441.
[12] SANDERS E D, AGUILO M A, PAULINO G H. Multi-material continuum topology optimization with arbitrary volume and mass constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 340:798-823.
[13] LONG K, WANG X, GU X. Local optimum in multi-material topology optimization and solution by reciprocal variables[J]. Structural & Multidisciplinary Optimization, 2018, 57(3):1-13.
[14] TAVAKOLI R, MOHSENI S M. Alternating active-phase algorithm for multi-material topology optimization problems:A 115-line MATLAB implementation[J]. Structural & Multidisciplinary Optimization, 2014, 49(4):621-642.
[15] TAVAKOLI R. Optimal design of multiphase composites under elastodynamic loading[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 300:265-293.
[16] LIEU Q X,LEE J H. A multi-resolution approach for multi-material topology optimization based on isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 323:272-302.
[17] PARK J, SUTRADHAR A. A multi-resolution method for 3D multi-material topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 285(2):571-586.
[18] ZUO W, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation[J]. Structural and Multidisciplinary Optimization, 2017, 55(2):477-491.
[19] 杜义贤, 李涵钊, 谢黄海, 等. 基于序列插值模型和多重网格方法的多材料柔性机构拓扑优化[J]. 机械工程学报, 2018, 54(13):47-56. DU Y X, LI H Z,XIE H H, et al. Topology optimization of multiple materials compliant mechanisms based on sequence interpolation model and multigrid method[J]. Journal of Mechanical Engineering, 2018, 54(13):47-56(in Chiness).
[20] 贾娇, 龙凯, 程伟. 稳态热传导下基于多相材料的一体化设计[J]. 航空学报, 2016, 37(4):1218-1227. JIA J, LONG K, CHENG W. Concurrent topology optimization based on multiphase materials under steady thermal conduction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1218-1227(in Chinese).
[21] 张宪民, 胡凯, 王念峰, 等. 基于并行策略的多材料柔顺机构多目标拓扑优化[J]. 机械工程学报, 2016, 52(19):1-8. ZHANG X M, HU K, WANG N F, et al. Multi-objective topology optimization of multiple materials compliant mechanisms based on parallel strategy[J]. Journal of Mechanical Engineering, 2016, 52(19):1-8(in Chinese).
[22] 龙凯, 谷先广, 王选. 基于多相材料的连续体结构动态轻量化设计方法[J]. 航空学报, 2017, 38(10):134-143. LONG K, GU X G, WANG X. Method for structural light design under vibration using multiple materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):134-143(in Chinese).
[23] WANG M Y, WANG X. "Color" level sets:A multi-phase method for structural topology optimization with multiple materials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6):469-496.
[24] LUO Z, TONG L Y, LUO J Z, et al. Design of piezoelectric actuators using a multiphase level set of piecewise constants[J]. Journal of Computational Physics, 2009, 228(7):2643-2659.
[25] HUANG X, XIE Y M. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials[J].Computational Mechanics, 2009, 43(3):393-401.
[26] WANG M Y, ZHOU S. Synthesis of shape and topology of multi-material structures with a phase-field method[J]. Journal of Computer-Aided Materials Design, 2004, 11(2-3):117-138.
[27] ZHOU S, WANG M Y. Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition[J]. Structural and Multidisciplinary Optimization, 2007, 33(2):89-111.
[28] 王博, 周演, 周鸣. 面向连续体拓扑优化的多样性设计求解方法[J]. 力学学报, 2016, 48(4):984-993. WANG B, ZHOU Y, ZHOU M. Multiple designs approach for continuum topology optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):984-993(in Chinese).
[29] RONG J H, XIAO T T, YU L H, et al. Continuum structural topological optimizations with stress constraints based on an active constraint technique[J]. International Journal for Numerical Methods in Engineering, 2016, 108(4):326-360.
[30] RONG J H, YU L, RONG X P, et al. A novel displacement constrained optimization approach for black and white structural topology designs under multiple load cases[J]. Structural and Multidisciplinary Optimization, 2017, 56(4):865-884.
[31] 俞燎宏, 荣见华, 赵志军, 等. 多工况载荷下连续体结构柔顺度拓扑优化问题的新的求解方法[J]. 机械工程学报, 2018, 54(5):210-219. YU L H,RONG J H, ZHAO Z J, et al. A new solving method of the compliance topology optimization problem of continuum structures under multiple load cases[J]. Chinese Journal of Mechanical Engineering, 2018, 54(5):210-219(in Chinese).
[32] KAI A J, HANSEN J S, MARTINS J R R A. Structural topology optimization for multiple load cases using a dynamic aggregation technique[J]. Engineering Optimization, 2009, 41(12):1103-1118.
[33] SVANBERG K. The method of moving asymptotes-A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
[34] SVANBERG K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. Siam Journal on Optimization, 2002, 12(2):555-573.
[35] SIGMUND O A. 99 line topology optimization code written in MATLAB[J]. Structural and Multidisciplinary Optimization, 2001, 21:120-127.
[36] SIGMUND O. Design of multiphsics actuators using topology optimization-Part Ⅱ:Two-material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190:6605-6627.
文章导航

/