电子电气工程与控制

双基地角时变下的ISAR稀疏孔径自聚焦成像

  • 朱晓秀 ,
  • 胡文华 ,
  • 马俊涛 ,
  • 郭宝锋 ,
  • 薛东方
展开
  • 陆军工程大学(石家庄校区) 电子与光学工程系, 石家庄 050003

收稿日期: 2018-01-29

  修回日期: 2018-05-07

  网络出版日期: 2018-05-07

基金资助

国家自然科学基金(61601496)

ISAR autofocusing imaging with sparse apertures and time-varying bistatic angle

  • ZHU Xiaoxiu ,
  • HU Wenhua ,
  • MA Juntao ,
  • GUO Baofeng ,
  • XUE Dongfang
Expand
  • Department of Electronic and Optical Engineering, Army Engineering University(Shijiazhuang Campus), Shijiazhuang 050003, China

Received date: 2018-01-29

  Revised date: 2018-05-07

  Online published: 2018-05-07

Supported by

Science Foundation of China (61601496)

摘要

针对双基地角时变下的逆合成孔径雷达(ISAR)成像分辨率低以及稀疏孔径存在相位误差引起图像散焦等问题,提出了一种基于贝叶斯压缩感知(BCS)的双基地ISAR稀疏孔径自聚焦高分辨成像算法。在平动补偿后回波数据的基础上,首先构造补偿相位将由双基地角时变引起的多普勒偏移补偿掉,然后构造随双基地角变化的稀疏基矩阵,建立基于压缩感知的双基地ISAR稀疏孔径观测模型,并将相位误差作为ISAR成像的模型误差,接着假设目标图像各像元服从Laplace先验、噪声统计特性服从Gaussian分布,利用贝叶斯推理进行"分布式"迭代求解,在高分辨成像的同时实现了相位自聚焦,仿真结果验证了算法的有效性和优越性。

本文引用格式

朱晓秀 , 胡文华 , 马俊涛 , 郭宝锋 , 薛东方 . 双基地角时变下的ISAR稀疏孔径自聚焦成像[J]. 航空学报, 2018 , 39(8) : 322059 -322059 . DOI: 10.7527/S1000-6893.2018.22059

Abstract

To solve the problems of poor resolution of bistatic Inverse Synthetic Aperture Radar (ISAR) imaging with time-varying bistatic angle and image defocus caused by the space-varying phase error in traditional sparse aperture imaging, a high-resolution imaging algorithm integrated with phase error correction is proposed based on Bayesian Compressive Sensing (BCS). First, based on the echo data which have been compensated after motion compensation, a phase compensation term is constructed to compensate the Doppler shift caused by the time-varying bistatic angle. Second, a sparse basis matrix changing with the time-varying bistatic angle is constructed to establish a model for compressive sensing-based bistatic ISAR imaging with sparse apertures. The phase error is then treated as the modeling error in ISAR imaging. It is then assumed that each pixel of the target image follows a Laplace prior and noise follows Gaussian prior. Bayesian inference is used to realize non-ambiguous azimuth imaging integrated with phase error correction iteratively. The simulation results verify the validity and superiority of the proposed algorithm.

参考文献

[1] 杨振起, 张永顺, 骆永军. 双(多)基地雷达系统[M]. 北京:国防工业出版社, 1998:14-15. YANG Z Q, ZHANG Y S, LUO Y J.Bistatic (multi-static) radar system[M]. Beijing:Defense Industry Press, 1998:14-15(in Chinese).
[2] MARTORELLA M, PALMER J, HOMER J, et al. On bistatic inverse synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):1125-1134.
[3] 朱仁飞, 罗迎, 张群, 等. 双基地ISAR成像分析[J]. 现代雷达, 2011, 33(8):33-38. ZHU R F, LUO Y, ZHANG Q, et al. Analysis of bistatic inverse synthetic aperture radar imaging[J]. Modern Radar, 2011, 33(8):33-38(in Chinese).
[4] 郭宝锋, 尚朝轩, 王俊岭, 等. 双基地角时变下的逆合成孔径雷达越分辨单元徙动校正算法[J]. 物理学报, 2014, 63(23):238406. GUO B F, SHANG C X, WANG J L, et al. Correction of migration through resolution cell inbistatic inverse synthetic aperture radar in the presence of time-varying bistatic angle[J]. Acta Physica Sinica, 2014, 63(23):238406(in Chinese).
[5] LIN D, FAN L H, JIN L. Bistatic ISAR imaging algorithm based on compressed sensing[C]//The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems.Berlin:Springer, 2014, 246:567-575.
[6] ZHANG S S, ZHANG W, ZONG Z L, et al, High-resolution bistatic ISAR imaging based on two-dimensional compressed sensing[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5):2098-2111.
[7] XU G, XING M D, CHEN Q Q, et al. High-resolution inverse synthetic aperture radar imaging and scaling with sparse aperture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8):4010-4027.
[8] 黄大荣, 郭兴荣, 张磊, 等. 稀疏孔径ISAR机动目标成像与相位补偿方法[J]. 航空学报, 2014, 35(7):2019-2030. HUANG D R, GUO X R, ZHANG L, et al. ISAR phase compensation and imaging of maneuvering target with sparse apertures[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):2019-2030(in Chinese).
[9] GUO B F, WANG J L, GAO M G, et al. Research on spatial-variant property of bistatic ISAR imaging plane of space target[J]. Chinese Physica B, 2015, 24(4):048402.
[10] BAE J H, KAE B S, LEE S H, et al. Bistatic ISAR image reconstruction using sparse-recovery interpolation of missing data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3):1155-1167.
[11] ZHANG L, WANG H X, QIAO Z J. Resolution enhancement for ISAR imaging via improved statistical compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1):1-19.
[12] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52:1289-1360.
[13] 徐刚, 包敏, 李亚超, 等. 基于贝叶斯估计的高精度ISAR成像[J]. 系统工程与电子技术, 2011, 33(11):2382-2388. XU G, BAO M, LI Y C, et al. High precision ISAR imaging via Bayesian statistic[J]. Systems Engineering and Electronics, 2011, 33(11):2382-2388(in Chinese).
[14] ZHANG L, QIAO Z J, XING M D, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2):997-1008.
[15] MA J T, GAO M G, GUO B F, et al. High resolution ISAR imaging of three-axis-stabilized space target by exploiting orbital and sparsepriors[J]. Chinese Physica B, 2017, 26(10):108401.
[16] JI S, XUE Y, CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Process, 2008, 56(6):2346-2356.
[17] LIU H C, JIU B, LIU H W, et al.Superresolution ISAR imaging based on sparse bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):5005-5013.
[18] 王天云, 陆新飞, 孙麟, 等. 基于贝叶斯压缩感知的ISAR自聚焦成像[J]. 电子与信息学报, 2015, 37(11):2719-2726. WANG T Y, LU X F, SUN L, et al. An autofocus imaging method for ISAR based on Bayesian compressive sensing[J]. Journal of Electronics and Information Technology, 2015, 37(11):2719-2726(in Chinese).
[19] BABACAN S D, MOLINA R, KATSAGGELOS A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1):53-63.
[20] ANDREWS D F, MALLOWS C L. Scale mixtures of normal distributions[J]. Journal of the Royal Statistical Society, Series B, 1974, 36(1):99-102.
[21] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3):211-244.
文章导航

/