根据吊挂式模态试验系统的工作原理,通过合理简化等效,建立了吊挂式模态试验系统的力学基本模型。依据瑞利理论,求解出其在水平和竖直2个方向测试基频的解析计算公式,揭示了测试基频和真实基频的等量关系式,分析了2个方向上基频测试误差的产生机理、影响因素和变化趋势。通过开展标准杆模态试验以及有限元仿真分析,验证了吊挂式模态试验系统力学等效模型合理、正确和有效。结果表明,吊挂式模态试验系统竖直方向的基频测试值偏低,水平方向的基频测试值偏高,需对测试结果进行误差修正,方能得到被测对象较准确的基频值。
According to the working principles of the hanging modal test system, a basic mechanical model for the system is established via reasonable simplification and equivalence. Based on the Rayleigh theory, calculation formulas for correction of the test frequency in both horizontal and vertical directions are given, and the relationship between the test base frequency and true base frequency is revealed. The mechanism, influencing factors and trends of the test base frequency errors in both directions are analyzed. Through the modal test of the standard bar and finite element simulation analysis, the mechanical equivalent model for the hanging modal test system is verified to be reasonable, correct and effective. The results show that the test base frequency of the hanging modal test system in the vertical direction is low and the test base frequency in the horizontal direction is high, and thus the test result errors must be corrected to obtain the accurate base frequency of the measured object.
[1] 刘荣强, 田大可, 邓宗全. 空间可展开天线结构的研究现状与展望[J]. 机械设计, 2010(9):1-10. LIU R Q, TIAN D K, DENG Z Q. Research actuality and prospect of structure for space deployable antenna[J]. Journal of Machine Design, 2010(9):1-10(in Chinese).
[2] 柯受全, 金恂叔. 卫星环境工程和模拟试验[M]. 北京:宇航出版社, 1996:178-179. KE S Q, JIN X S. Satellite environment engineering and simulation experiment[M]. Beijing:Aerospace Publishing House, 1996:178-179(in Chinese).
[3] 沃德·海伦, 斯蒂芬·拉门兹.模态分析理论与试验[M]. 白化同, 郭继忠, 译. 北京:北京理工大学出版社, 2001:143-146. WARD H, STEPHEN R. Modal analysis theory and experiments[M]. BAI H T, GUO J Z, translated. Beijing:Beijing Institute of Technology Press, 2001:143-146(in Chinese).
[4] 郭其威, 张美艳, 唐国安. 太阳能电池阵地面模态试验的重力影响及其校正方案[J]. 振动与冲击, 2008, 27(12):44-47. GUO Q W, ZHANG M Y, TANG G A. Gravity effect and calibration scheme of ground mode test of solar cell array[J]. Journal of Vibration and Shock, 2008, 27(12):44-47(in Chinese).
[5] 马睿, 姜东, 吴邵庆, 等. 考虑重力影响的太阳翼模型修正方法研究[J]. 宇航学报, 2014, 35(12):1373-1378. MA R, JIANG D, WU S Q, et al. A Model updating method for solar array considering the influence of gravity[J]. Journal of Astronautics, 2014, 35(12):1373-1378(in Chinese).
[6] 孙建辉, 单晓杭, 邹义成, 等. 超低频模态试验悬挂系统:CN201731894 U[P]. 2011-02-02. SUN J H, SHAN X H, ZOU Y C, et al. Ultra-low frequency modal test suspension system:CN201731894 U[P]. 2011-02-02(in Chinese).
[7] 单晓杭, 孙建辉, 周海, 等. 一种水平方向上的超低频模态试验装置:CNIO3063391 A[P]. 2013-04-02. SHAN X H, SUN J H, ZHOU H, et al. A horizontal ultra-low frequency modal test device:CNIO3063391 A[P]. 2013-04-02(in Chinese).
[8] 柴荣旺. 超低频悬挂设备气动系统控制研究[D]. 杭州:浙江工业大学, 2014:16-24. CHAI R W. Research on pneumatic system control of ultra-low frequency suspension equipment[D]. Hangzhou:Zhejiang University of Technology, 2014:16-24(in Chinese).
[9] 路波, 陶国岛, 刘昊. 零重力模拟气动悬挂系统的开发及关键技术[J].浙江大学学报(工学版), 2009, 43(5):890-896. LU B, TAO G D, LIU H. Development and key technologies of pneumatic suspension system for zero-gravity simulation[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(5):890-896(in Chinese).
[10] 洪小其, 戴尚昆, 王时杰. 基于C8051F040的高精度气压控制模态测试悬挂系统[J]. 机电工程, 2011, 28(1):106-110. HONG X Q, DAI S K, WANG S J. High precision pneumatic control based on C8051F040 in modal testing suspension system[J]. Electrical and Mechanical Engineering, 2011, 28(1):106-110(in Chinese).
[11] 谢礼立, 吕大刚. 高等结构动力学[M]. 北京:高等教育出版社, 2007:320-324. XIE L L, LV D G. Advanced structural dynamics[M]. Beijing:Higher Education Press, 2007:320-324(in Chinese).