固体力学与飞行器总体设计

独立桨距控制对直升机飞行性能的影响

  • 董晨 ,
  • 韩东 ,
  • 杨克龙
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2018-02-01

  修回日期: 2018-04-09

  网络出版日期: 2018-04-17

基金资助

国家自然科学基金(11472129);直升机旋翼动力学国家级重点实验室基金(6142220050416220002);航空科学基金(20165752048);南京航空航天大学研究生创新基地(实验室)开放基金(KFJJ20170102);中央高校基本科研业务费专项资金

Effect of individual blade pitch control on flight performance of helicopters

  • DONG Chen ,
  • HAN Dong ,
  • YANG Kelong
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2018-02-01

  Revised date: 2018-04-09

  Online published: 2018-04-17

Supported by

National Natural Science Foundation of China (11472129); National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics Laboratory (6142220050416220002); Aeronautical Science Foundation of China (20165752048); Foundation of Graduate Innovation Center in NUAA (KFJJ20170102); the Fundamental Research Funds for the Central Universities

摘要

为研究旋翼独立桨距控制对直升机飞行性能的影响,在已验证的直升机性能分析模型基础上,以UH-60A直升机为样例,通过输入不同阶次、幅值和相位角的独立桨距,分析直升机的需用功率和升阻比变化,在此基础上给出了旋翼桨盘内迎角和阻力系数的分布,探讨了独立桨距控制提升直升机性能的机理。分析结果表明:高速时,2阶和3阶的独立桨距控制可降低旋翼需用功率、提高直升机的升阻比,但提升效果有限,直升机起飞重量较大时,效果更明显;2阶耦合3阶的独立桨距控制对旋翼性能的提升效果比单独的2阶或3阶桨距输入更好,样例直升机的需用功率最多降低了4.5%,4阶的独立桨距输入则不利于提升旋翼性能;输入独立桨距后,旋翼桨盘迎角分布改善,后行侧迎角减小,有利于推迟失速,桨盘的后行侧的阻力系数减小,可有效降低旋翼的需用功率,提升直升机飞行性能。

本文引用格式

董晨 , 韩东 , 杨克龙 . 独立桨距控制对直升机飞行性能的影响[J]. 航空学报, 2018 , 39(10) : 222075 -222075 . DOI: 10.7527/S1000-6893.2018.22075

Abstract

A verified model for prediction of helicopter performance is used to investigate the effect of individual blade pitch control on the flight performance of helicopters. The influence of the harmonic number, amplitude, and phase angle of the pitch control on the rotor power required and lift to drag ratio of the UH-60A helicopter is analyzed. The distribution of the angle of attack and drag coefficient over the rotor disk are shown to analyze the physical mechanism of performance improvement by individual blade pitch control. The results indicate that the second-and third-order harmonic individual blade pitch control can reduce the power required and increase the helicopter lift to drag ratio in high speed flight, but the effect is relatively limited. For the helicopter with larger take-off weight, the effect can be enhanced. The performance improvement achieved by the second-order harmonic coupled with the third-order harmonic individual blade pitch control is better than that by a single harmonic input, and the maximum power reduction is 4.5%. The fourth-order harmonic individual blade pitch control does not exhibit the potential in performance improvement. In high speed flight, the blade pitch control can reduce the angle of attack in the retreating side and delay the stall, and then the drag coefficient and rotor power required can be reduced to improve the flight performance of the helicopter.

参考文献

[1] SWANSON S M, JACKLIN A, BLAAS A, et al. Individual blade control effects on blade-vortex interaction noise[C]//The American Helicopter Society 50th Annual Forum. Fairfax, VA:American Helicopter Society, 1994.
[2] SPLETTSTOESSER W R, SCHULTZ K J, VAN DER-WALL B, et al. Helicopter noise reduction by individual blade control (IBC)-Selected flight test and simulation results[C]//The RTA-AVT Symposium, 2000.
[3] 倪同兵, 招启军, 马砾. 基于IBC方法的旋翼BVI噪声主动控制机理[J]. 航空学报, 2017, 38(7):120744. NI T B, ZHAO Q J, MA L. Active control mechanism of rotor BVI noise based on IBC method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120744(in Chinese).
[4] FÜRST D, KEBLER C, AUSPITZER T, et al. Closed loop IBC-system and flight test results on the CH-53G helicopter[C]//The American Helicopter Society 60th Annual Forum, 2004.
[5] ROGET B, CHOPRA I. Individual blade control methodology for a rotor with dissimilar blades[J]. Journal of the American Helicopter Society, 2003, 48(3):176-185.
[6] 孙超, 陆洋, 马锦超. 基于独立桨距控制的电控旋翼主动振动控制[J]. 南京航空航天大学学报, 2016, 48(2):251-255. SUN C, LU Y, MA J C. Active vibration control through individual blade control on electrically controlled rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2):251-255(in Chinese).
[7] PAYNE P R. Higher harmonic rotor control:The possibilities of third and higher harmonic feathering for delaying the stall limit in helicopter[J]. Aircraft Engineering and Aerospace Technology, 1958, 2(8):222-226.
[8] KEBLER C. Active rotor control for helicopters:Individual blade control and swashplateless rotor designs[J]. CEAS Aeronautical Journal, 2011(1):23-54.
[9] FRIEDMANN P P. On-blade control of rotor vibration, noise, and performance:Just around the corner?[J]. Journal of the American Helicopter Society, 2014, 59(4):041001.
[10] 韩东, 董晨, 魏武雷, 等. 自适应旋翼研究进展[J]. 航空学报, 2018, 39(4):221603. HAN D, DONG C, WEI W L, et al. Research progress in adaptive rotor to improve rotor performance[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):221603(in Chinese).
[11] ARCIDIACONO P J. Theoretical performance of helicopters having second and higher harmonic feathering control[J]. Journal of the American Helicopter Society, 1961, 5(2):8-19.
[12] SHAW J, ALBION N, HANKER E J, Jr, et al. Higher harmonic control:Wind tunnel demonstration of fully effective vibratory hub force suppression[J]. Journal of the American Helicopter Society, 1989, 34(1):14-25.
[13] NORMAN T R, THEODORE C, SHINODA P, et al. Full-scale wind tunnel test of a UH-60 individual blade control system for performance improvement and vibration, loads, and noise control[C]//The American Helicopter Society 65th Annual Forum. Fairfax, VA:American Helicopter Society, 2009.
[14] JACKLIN S A, LEYLAND J A, BLAAS A. Full-scale wind tunnel investigation of a helicopter individual blade control system[C]//34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 1993:576-586.
[15] JACKLIN S A, BLASS A, TEVES D, et al. Reduction of helicopter BVI noise, vibration, and power consumption through individual blade control[C]//The American Helicopter Society 51st Annual Forum. Fairfax, VA:American Helicopter Society, 1995:662-680.
[16] CHENG R P, THEODORE C R, CELI R. Effects of two/rev higher harmonic control on rotor performance[J]. Journal of the American Helicopter Society, 2003, 48(1):18-27.
[17] CHENG R P, CELI R. Optimum two-per-revolution inputs for improved rotor performance[J]. Journal of Aircraft, 2005, 42(6):1409-1417.
[18] YEO H, ROMANDER E A, NORMAN T R. Investigation of rotor performance and loads of a UH-60A individual blade control system[C]//The American Helicopter Society 66th Annual Forum, 2010.
[19] KÜFAMANN P, BARTELS R, WALL B G. Rotor performance enhancement via localized pitch control and its effects on hub vibration and pitch link loads[J]. CEAS Aeronautical Journal, 2017(8):181-196.
[20] 王超, 陆洋, 陈仁良. 直升机桨距主动控制对旋翼性能的影响[J]. 航空动力学报, 2014, 29(8):1922-1929. WANG C, LU Y, CHEN R L. Effect of active blade pitch control on helicopter rotor performance[J]. Journal of Aerospace Power, 2014, 29(8):1922-1929(in Chinese)
[21] 张勇刚, 崔钊, 韩东, 等. 加装格尼襟翼旋翼的直升机飞行性能[J]. 航空学报, 2016, 37(7):2208-2217. ZHANG Y G, CUI Z, HAN D, et al. Flight performance of helicopter rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2208-2217(in Chinese).
[22] PETERS D A, HAQUANG N. Dynamic inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4):64-68.
[23] JOHNSON W. Helicopter theory[M]. New York:Dover Publications, Inc., 1994:222-238
[24] LEISHMAN J G. Principles of helicopter aerodynamics[M]. New York:Cambridge University Press, 2006:228-231
[25] YEO H, BOUSMAN W G, JOHNSON W. Performance analysis of a utility helicopter with standard and advanced rotors[J]. Journal of the American Helicopter Society, 2004, 49(3):250-270.
[26] HILBERT K B. A mathematical model of the UH-60 helicopter:NASA-TM-85890[R]. Washington, D.C.:NASA, 1984.
[27] DAVIS S J. Predesign study for a modern 4-bladed rotor for the RSRA:NASA-TM-CR-166155[R]. Washington, D.C.:NASA, 1981.
[28] ANDERSON J D, Jr. Fundamentals of aerodynamics[M]. New York:McGraw-Hill Education, 2001:93-98.
文章导航

/