材料工程与机械制造

航天材料空间环境效应地面模拟试验标准体系

  • 沈自才 ,
  • 刘宇明 ,
  • 田东波 ,
  • 丁义刚 ,
  • 赵春晴 ,
  • 夏彦
展开
  • 北京卫星环境工程研究所, 北京 100094

收稿日期: 2018-03-01

  修回日期: 2018-04-16

  网络出版日期: 2018-04-16

基金资助

国家自然科学基金(41174166);国防基础科研项目(JSHS201503B002)

Standard system for ground simulation test of space environmental effect on space materials

  • SHEN Zicai ,
  • LIU Yuming ,
  • TIAN Dongbo ,
  • DING Yigang ,
  • ZHAO Chunqing ,
  • XIA Yan
Expand
  • Beijing Institute of Space Environment Engineering, Beijing 100094, China

Received date: 2018-03-01

  Revised date: 2018-04-16

  Online published: 2018-04-16

Supported by

National Natural Science Foundation of China (41174166); Defense Industrial Technology Development Program(JSHS2015203B002)

摘要

首先对航天器在不同轨道将遇到的空间环境进行了分析,对航天材料在不同空间环境下的损伤效应与机制进行了探讨,并对不同空间环境对航天材料的协同效应进行了研究。进而在对国内外主要航天机构或国家的航天材料空间环境效应地面模拟试验标准建设情况进行梳理的基础上,借鉴国外航天材料空间环境效应地面模拟试验评价标准的建立和使用经验,构建了由通用方法、单一空间环境和多因素空间环境协同作用下的航天材料空间环境效应地面模拟试验标准体系。

本文引用格式

沈自才 , 刘宇明 , 田东波 , 丁义刚 , 赵春晴 , 夏彦 . 航天材料空间环境效应地面模拟试验标准体系[J]. 航空学报, 2018 , 39(S1) : 722190 -722190 . DOI: 10.7527/S1000-6893.2018.22190

Abstract

Space environments which spacecraft will encounter in different orbits are analyzed. The damage effect and mechanism of materials in space environments are discussed. Synergistic effects of different space environments on space materials are studied. Development of standards for ground simulation tests of space environmental effects on space materials home and abroad are analyzed. Based on relative foreign experience, a standard system for the ground simulation test, which consists of general method, single space environmental effect test method and combined space environmental effect test method, is proposed.

参考文献

[1] 沈自才. 空间辐射环境工程[M]. 北京:宇航出版社, 2013:1-3. SHEN Z C. Space radiation environment engineering[M]. Beijing:China Astronautic Publishing House, 2013:1-3(in Chinese).
[2] 沈自才, 丁义刚. 抗辐射设计与辐射效应[M]. 北京:中国科学技术出版社, 2015:13-15. SHEN Z C, DING Y G. Radiation resistance design and radiation effect[M]. Beijing:China Science and Technology Press, 2015:13-15(in Chinese).
[3] 沈自才, 欧阳晓平, 高鸿, 等. 航天材料工程学[M]. 北京:国防工业出版社,2016:109-112. SHEN Z C, OUYANG X P, GAO H, et al. Aerospace material engineering[M]. Beijing:National Defense Industry Press, 2016:119-112(in Chinese).
[4] 冯伟泉,丁义刚, 闫德葵, 等. 空间电子、质子和紫外综合辐照模拟试验研究[J]. 航天器环境工程, 2005, 22(2):69-72. FENG W Q, DING Y G, YAN D K, et al. Study on space electron, proton and ultraviolet combined irradiation simulation test[J]. Spacecraft Environment Engineering, 2005, 22(2):69-72(in Chinese).
[5] 沈自才, 邱家稳, 丁义刚, 等.航天器空间多因素环境协同效应研究[J].中国空间科学技术, 2012, 32(5):54-60. SHEN Z C, QIU J W, DING Y G, et al. Space environment synergistic effect on spacecraft[J].Chinese Space Science and Technology, 2012, 32(5):54-60(in Chinese).
[6] 邱家稳, 沈自才, 肖林.航天器空间环境协同效应研究[J]. 航天器工程, 2013, 22(1):15-20. QIU J W, SHEN Z C, XIAO L. Study on synergistic effect of space environments on spacecraft[J]. Spacecraft Engineering, 2013, 22(1):15-20(in Chinese).
[7] European Cooperation for Space Standardization. Space product assurance-Thermal vacuum outgassing test for the screening of space materials:ECSS-Q-ST-70-02C[S]. Noordwijk:ESA Publications Division, 2008:1-45.
[8] National Aeronautics and Space Administration. Outgassing test for nonmetallic materials associated with sensitive optical surfaces in a space environment:MSFC-SPEC-1443A[S]. Huntsville:Marshall Space Flight Center, 2003:1-11.
[9] ASTM International. Standard test method for contamination outgassing characteristics of spacecraft materials:ASTM E 1559-09[S]. New York:ASTM International, 2009:1-11.
[10] ASTM International. Standard test method for total mass loss and collected volatile condensable materials from outgassing in a vacuum environment:ASTM E 595-15[S]. New York:ASTM International, 2015:1-9.
[11] 国防科学技术工业局. 真空中材料质量损失测试方法:QJ 1322A-2014[S]. 北京:中国航天标准化研究所, 2014:1-12. National Defense Science and Technology Industry Bureau. Test method for mass loss of materials in vacuum:QJ 1322A-2014[S]. Beijing:China Institute of Spaceflight Standardization, 2014:1-12(in Chinese).
[12] 国防科学技术工业局. 航天器用非金属材料真空出气评价方法:QJ 20290-2014[S]. 北京:中国航天标准化研究所, 2014:1-10. National Defense Science and Technology Industry Bureau. Evaluating method of spacecraft nonmetal materials outgassing in vacuum:QJ 20290-2014[S]. Beijing:China Institute of Spaceflight Standardization, 2014:1-12(in Chinese).
[13] 国防科学技术工业局. 真空条件下材料挥发性能测试方法:QJ 1558B-2016[S]. 北京:中国航天标准化研究所, 2016:1-10. National Defense Science and Technology Industry Bureau. Test method for materials outgassing performance in vacuum:QJ 1558B-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-10(in Chinese).
[14] 中华人民共和国航空航天工业部. 真空-紫外辐照材料质量损失测试方法:QJ 1991-90[S]. 北京:中国航天标准化研究所, 1990:1-6. Ministry of Aeronautics and Astronautics of People's Republic of China. Test method for mass loss of materials irradiated by vacuum ultraviolet:QJ 1991-90[S]. Beijing:China Institute of Spaceflight Standardization, 1990:1-6(in Chinese).
[15] European Cooperation for Space Standardization. Space product assurance-Thermal testing for the evaluation of space materials, processes, mechanical parts and assemblies:ECSS-Q-ST-70-04C[S]. Noordwijk:ESA Publications Division, 2008:1-25.
[16] 国防科学技术工业委员会. 航天器热控涂层试验方法第8部分:热循环试验:GJB 2502.8-2006[S]. 北京:国防科工委军标出版发行部,2006:1-5. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 8:Thermal cycle test:GJB 2502.8-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-5(in Chinese).
[17] European Cooperation for Space Standardization. Space product assurance-Flammability testing for the screening of space materials:ECSS-Q-ST-70-21C[S]. Noordwijk:ESA Publications Division, 2010:1-48.
[18] International Organization for Standardization. Space systems-Space environment-Simulation guidelines for radiation exposure of non-metallic materials:ISO/DIS 15856:2010[S]. Geneva:International Organization for Standardization, 2010:1-32.
[19] National Standards Committee of the Soviet Union. Polimeric materials,methods of radiation tests:GOST 25645.323[S]. Moscow:Standard Press, 1988:1-44.
[20] National Standards Committee of Russia. Polymeric materials for space technique. Requirements for ultraviolet radiation stability tests:GOST R 25645.338[S]. Moscow:Standard Press, 1996:1-16
[21] 国防科学技术工业委员会. 航天器热控涂层试验方法第5部分:真空-紫外辐照试验:GJB 2502.5-2006[S]. 北京:国防科工委军标出版发行部,2006:1-6. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 5:Ultraviolet irradiation test in vacuum:GJB 2502.5-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-6(in Chinese).
[22] 国防科学技术工业委员会. 航天器热控涂层试验方法第6部分:真空-质子辐照试验:GJB 2502.6-2006[S]. 北京:国防科工委军标出版发行部,2006:1-7. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 6:Proton irradiation test in vacuum:GJB 2502.6-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-7(in Chinese).
[23] 国防科学技术工业委员会. 航天器热控涂层试验方法第7部分:真空-电子辐照试验:GJB 2502.7-2006[S]. 北京:国防科工委军标出版发行部,2006:1-7. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 7:Electron irradiation test in vacuum:GJB 2502.7-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-7(in Chinese).
[24] 国防科学技术工业局. 空间用非金属材料太阳紫外辐射效应试验方法:QJ 20286-2014[S]. 北京:中国航天标准化研究所, 2014:1-12. National Defense Science and Technology Industry Bureau. Test method of solar ultraviolet radiation effect for space non-metallic materials:QJ 20286-2014[S]. Beijing:China Institute of Spaceflight Standardization, 2014:1-12(in Chinese).
[25] 国防科学技术工业局. 空间用非金属材料电离辐射效应试验方法:QJ 20289A-2016[S]. 北京:中国航天标准化研究所, 2016:1-9. National Defense Science and Technology Industry Bureau. Test method for total ionizing radiation effect of spacecraft non-metal materials:QJ 20289A-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-9(in Chinese).
[26] 国防科学技术工业局. 空间材料电子辐射效应试验方法:QJ 20627-2016[S]. 北京:中国航天标准化研究所, 2016:1-13. National Defense Science and Technology Industry Bureau. Test method of electron radiation effect for space materials:QJ 20627-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-13(in Chinese).
[27] ASTM International. Standard practices for ground laboratory atomic oxygen interaction evaluation of materials for space applications:ASTM E2089-14[S]. New York:ASTM International, 2014:1-5.
[28] MINTON T K. Protocol for atomic oxygen testing of materials in ground-based facilities:NASA CR-197332[R]. Washington, D.C.:NASA, 1994.
[29] 国防科学技术工业委员会. 航天器热控涂层试验方法第9部分:原子氧试验:GJB 2502.9-2006[S]. 北京:国防科工委军标出版发行部,2006:1-6. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 9:Atomic oxygen test:GJB 2502.9-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-6(in Chinese).
[30] 国家国防科学技术工业局. 空间材料原子氧效应试验方法:QJ 20285-2014[S]. 北京:中国航天标准化研究所, 2014:1-10. National Defense Science and Technology Industry Bureau. Test method of atomic oxygen effect for spacecraft materials:QJ 20285-2014[S]. Beijing:China Institute of Spaceflight Standardization, 2014:1-10(in Chinese).
[31] International Organization for Standardization. Space systems-Space solar panels-Spacecraft charging induced electrostatic discharge test methods:ISO 11221:2011[S]. Geneva:International Organization for Standardization, 2011:1-50.
[32] European Cooperation for Space Standardization. Space engineering-Spacecraft charging:Environment-induced effects on the electrostatic behaviour of space systems ECSS-E-ST-20-06C[S]. Noordwijk:ESA Publications Division, 2008:1-120.
[33] National Aeronautics and Space Administration. Low earth orbit spacecraft charging design standard:NASA STD-4005[S]. Washington, D.C.:NASA, 2007.
[34] National Aeronautics and Space Administration. Low earth orbit spacecraft charging design handbook:NASA-HDBK-4006[R]. Washington, D.C.:NASA, 2012.
[35] CAROLYN K P, HENRY B G, WHITTLESEY A C, et al. Design guidelines for assessing and controlling spacecraft charging effects:NASA TP-2361[R]. Washington, D.C.:NASA, 1984.
[36] National Aeronautics and Space Administration. Mitigating in-space charging effects-A guideline:NASA-HDBK-4002A[R]. Washington, D.C.:NASA, 2011.
[37] International Organization for Standardization. Space systems-Space solar cells-Electron and proton irradiation test methods:ISO 23038:2018[S]. Geneva:International Organization for Standardization, 2018:1-10.
[38] International Organization for Standardization. Test procedure to evaluate spacecraft material ejecta upon hypervelocity impact:ISO 11227:2012[S]. Geneva:International Organization for Standardization, 2012:1-23.
[39] 国防科学技术工业局. 航天器空间碎片撞击风险评估程序:QJ 20134-2012[S]. 北京:中国航天标准化研究所,2012:1-24. National Defense Science and Technology Industry Bureau. Risk assessment procedures for spacecraft against space debris impact:QJ 20134-2012[S]. Beijing:China Institute of Spaceflight Standardization, 2012:1-24(in Chinese).
[40] International Organization for Standardization. Space systems-Space environment simulation for material tests-General principles and criteria:ISO 17851:2016[S]. Geneva:International Organization for Standardization, 2016:1-24.
[41] International Organization for Standardization. Space systems-Measurements of thermo-optical properties of thermal control materials:ISO 16378:2013[S]. Geneva:International Organization for Standardization, 2013:1-36.
[42] ASTM International. Standard practice for combined, simulated space environment testing of thermal control materials with electromagnetic and particulate radiation:ASTM E512-94[S]. New York:ASTM International, 2015:1-9.
[43] European Cooperation for Space Standardization. Space product assurance-Particle and UV radiation testing for space materials:ECSS-Q-ST-70-06C[S]. Noordwijk:ESA Publications Division, 2008:1-28.
[44] 国防科学技术工业委员会. 航天器热控涂层试验方法第10部分:综合辐照试验:GJB 2502.10-2006[S]. 北京:国防科工委军标出版发行部,2006:1-7. National Defense Science and Technology Industry Committee. Test method for thermal control coatings of spacecraft Part 10:Combined irradiation test:GJB 2502.10-2006[S]. Beijing:The Publishing and Issuing Department of the Military Standard of the National Defense Department, 2006:1-7(in Chinese).
[45] 国防科学技术工业局. 空间材料综合辐射效应试验方法:QJ 20628-2016[S]. 北京:中国航天标准化研究所,2016:1-18. National Defense Science and Technology Industry Bureau. Test method of combined radiation effects for space materials:QJ 20628-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-12(in Chinese).
[46] 国防科学技术工业局. 航天器热控材料粒子和紫外综合环境效应试验方法:QJ 20288A-2016[S]. 北京:中国航天标准化研究所, 2016:1-11. National Defense Science and Technology Industry Bureau. Test method for particle and ultraviolet radiation combined effects of spacecraft thermal control materials:QJ 20288A-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-11(in Chinese).
[47] 国防科学技术工业局. 空间材料原子氧与紫外综合环境试验方法:QJ 20287-2014[S]. 北京:中国航天标准化研究所, 2014:1-12. National Defense Science and Technology Industry Bureau. Test method of atomic oxygen and ultraviolet radiation synergistic effects for spacecraft materials:QJ 20287-2014[S]. Beijing:China Institute of spaceflight Standardization, 2014:1-12(in Chinese).
[48] 国防科学技术工业局. 空间材料原子氧与热循环综合环境模拟试验方法:QJ 20629-2016[S]. 北京:中国航天标准化研究所, 2016:1-12. National Defense Science and Technology Industry Bureau. Test method of atomic oxygen and thermal cycling synergistic effect for spacecraft materials:QJ 20629-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-12(in Chinese).
[49] 国防科学技术工业局. 空间材料原子氧与带电粒子综合环境模拟试验方法:QJ 20630-2016[S]. 北京:中国航天标准化研究所,2016:1-17. National Defense Science and Technology Industry Bureau. Test method of atomic oxygen and energetic particles synergistic effect for spacecraft materials:QJ 20630-2016[S]. Beijing:China Institute of Spaceflight Standardization, 2016:1-17(in Chinese).
文章导航

/