固体力学与飞行器总体设计

延性材料断裂准则与平面应变断裂韧度

  • 韩光照 ,
  • 蔡力勋 ,
  • 姚迪 ,
  • 于思淼
展开
  • 西南交通大学 力学与工程学院, 成都 610031

收稿日期: 2017-11-08

  修回日期: 2018-04-16

  网络出版日期: 2018-04-16

基金资助

国家自然科学基金(11472228)

Fracture criterion and plane-strain fracture toughness of ductile materials

  • HAN Guangzhao ,
  • CAI Lixun ,
  • YAO Di ,
  • YU Simiao
Expand
  • School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Received date: 2017-11-08

  Revised date: 2018-04-16

  Online published: 2018-04-16

Supported by

National Natural Science Foundation of China (11472228)

摘要

延性材料的临界断裂规律对结构完整性评价和金属塑性成形分析具有重要意义,但相关的弹塑性断裂强度研究长期存在瓶颈。本文针对30Cr2Ni4MoV低压转子钢和3Cr13不锈钢,完成了不同应力三轴度的4类试样拉伸破坏试验,基于FAT (Finite-element-analysis Aided Testing)方法,通过有限元迭代分析实现试样的载荷-位移关系逼近,进而获得材料直至断裂的全程等效应力-应变关系,并以此通过有限元正向分析获取4种试样的临界断裂阈值和临界应力三轴度,提出了基于临界断裂单元的应力三轴度与第一主应力阈值之间的对数型断裂强度准则。结果表明,2种材料、4类试样的FAT阈值分析结果与断裂强度准则符合良好。最后,基于断裂强度准则提出了依据I型裂纹尖端的应力分布预测材料平面应变启裂断裂韧度的新方法,并获得了30Cr2Ni4MoV低压转子钢和3Cr13不锈钢的平面应变启裂断裂韧度,结合临界断裂准则和裂纹静态扩展机理,提出了I型裂纹的材料J阻力曲线的理论预测方法,并给出了30Cr材料的预测结果。

本文引用格式

韩光照 , 蔡力勋 , 姚迪 , 于思淼 . 延性材料断裂准则与平面应变断裂韧度[J]. 航空学报, 2018 , 39(8) : 221852 -221852 . DOI: 10.7527/S1000-6893.2018.21852

Abstract

Research on fracture criterion has great significance in structural integrity evaluation and metal forming analysis However, research on elastic-plastic fracture strength has long been a bottleneck. In this paper, the Finite-element-analysis Aided Testing (FAT) method was used to obtain the accurate full-range effective constitutive relation up to failure of the 30Cr2Ni4MoV rotor steel and 3Cr13 stainless steel. Four typical structure failure tests of the specimens with different stress triaxiality were carried out, and their fracture thresholds and critical stress triaxiality were obtained using finite element analysis according to the full-range constitutive relations. The results show that there exists logarithmic law between the maximum stress triaxiality and the first principal stress thresholds as those representative volume elements with the triaxiality of the specimens reach their critical breaking state. According to the first principle stress envelope of crack tip and the logarithmic fracture criteria, the Ⅰ-type crack fracture toughness of 30Cr2Ni4MoV and 3Cr13 steel was predicted. A new method is proposed to predict the J-resistance curve of the material with the I-type crack fracture based on the mechanism of crack static growth. As an example, the J-resistance curve of 30Cr steel was predicted and discussed.

参考文献

[1] MCCLINTOCK F A. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics, 1968, 35(2):363-371.
[2] ATKINS A G. Fracture in forming[J]. Journal of Materials Processing Technology, 1996, 56(1):609-618.
[3] ZHANG Y, CHEN Z. On the effect of stress triaxiality on void coalescence[J]. International Journal of Fracture, 2007, 143(1):105-112.
[4] FREUDENTHAL F A. The inelastic behaviour of solids[M]. New York:Wiley, 1950.
[5] COCKCROFT M G, LATHAM D J. Ductility and the workability of metals[J]. The Institute of Metals, 1968, 96(1):33-39.
[6] RICE J R, TRACY D M. On the ductile enlargement of voids in triaxiality stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217.
[7] OYANE M. Criteria of ductile fracture strain[J]. Bulletin of JSME, 1972, 15(90):1507-1513.
[8] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth:Part I-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):2-15.
[9] OH S I, CHEN C C, KOBAYASHI S. Ductile fracture in axisymmetric extrusion and drawing[J]. Journal of Engineering for Industry, 1979, 101(1):36-44.
[10] WILKINS M L, STREIT R D, REAUGH J E. Cumulative-strain-damage model of ductile fracture:Simulation and prediction of engineering fracture tests:UCRL-53058[R]. San Leandro, CA:Lawrence Livermore National Laboratory, 1980.
[11] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
[12] 杨锋平, 罗金恒, 张华, 等. 金属延性断裂准则精度的评价[J]. 塑性工程学报, 2011, 18(2):103-106. YANG F P, LUO J H, ZHANG H, et al. Evaluation of ductile fracture criterions[J]. Journal of Plasticity Engineering, 2011, 18(2):103-106(in Chinese).
[13] BAO Y, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1):81-98.
[14] BRIDGMAN P W. Studies in large plastic flow and fracture[M]. New York:McGraw-Hill, 1952.
[15] DI Y, CAI L, CHEN B. A new approach on necking constitutive relationships of ductile materials at elevated temperatures[J]. Chinese Journal of Aeronautics, 2016, 29(6):1626-1634.
[16] 姚迪, 蔡力勋, 包陈, 等. 基于试验与有限元耦合技术的延性材料全程等效应力应变关系获取方法[J]. 固体力学学报, 2014, 35(3):226-240. YAO D, CAI L X, BAO C, et al. Determination of stress-strain curve of ductile materials by testing and finite element coupling method[J]. Chinese Journal of Solid Mechanics, 2014, 35(3):226-240(in Chinese).
[17] 姚迪, 蔡力勋, 包陈. 延性材料全阶段应力应变关系获取方法[J]. 中国测试, 2014(5):5-13. YAO D, CAI L X, BAO C, et al. Approach for full-range uniaxial constitutive relationships of ductile materials[J].China Measurement and Test, 2014(5):5-13(in Chinese).
[18] HUTCHINSON J W. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1):13-31.
[19] RICE J R, ROSENGREN G F. Plane strain deformation near a crack tip in a power-law hardening material[J]. Journal of the Mechanics and Physics of Solids, 1968, 16(1):1-12.
[20] SHIH C F. Tables of Hutchinson-Rice-Rosengren singular field quantities[D]. Rhode Island:Brown University, 1983.
[21] XIA L, SHIH C F. Ductile crack growth-I. A numerical study using computational cells with micro structurally-based length scales[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(2):233-259.
[22] LANDES J D. The blunting line in elastic-plastic fracture[J]. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18(11):1289-1297.
[23] 刘涛, 蔡力勋, 高怡斐, 等.金属材料准静态断裂韧度的统一试验方法:GB/T 21143-2014[S]. 北京:中国标准出版社, 2015. LIU T, CAI L X, GAO Y F, et al. Metallic materials-Unified method of test for determination of quasistatic fracture toughness:GB/T 21143-2014[S]. Beijing:Standards Press of China, 2015(in Chinese).
文章导航

/