流体力学与飞行力学

基于矫正广义走廊的电动倾转旋翼机模态转换

  • 鲁麟宏 ,
  • 付荣 ,
  • 王勇 ,
  • 曾建平
展开
  • 1. 厦门大学 航空航天学院, 厦门 361005;
    2. 北京航空航天大学 无人机系统研究院, 北京 100083

收稿日期: 2017-11-30

  修回日期: 2018-04-02

  网络出版日期: 2018-04-02

基金资助

国家自然科学基金(61673325,61374037)

Mode conversion of electric tilt rotor aircraft based on corrected generalized corridor

  • LU Linhong ,
  • FU Rong ,
  • WANG Yong ,
  • ZENG Jianping
Expand
  • 1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China;
    2. Research Institute of Unmanned Aerial Vehicle, Beihang University, Beijing 100083, China

Received date: 2017-11-30

  Revised date: 2018-04-02

  Online published: 2018-04-02

Supported by

National Natural Science Foundation of China (61673325,61374037)

摘要

研究了基于矫正广义走廊和在线增益调度方法的电动倾转旋翼机模态转换控制问题。针对传统配平方法导致模态转换过程中时变动态特征被忽略的不足,提出一种新的两步法配平策略,即矫正配平工作点,并获得矫正广义走廊,以减小系统实际运行状态与配平工作点的偏离程度,进而改善增益调度方法的控制效果。传统增益调度方法控制器设计工作量较大,针对该问题设计了在线增益调度算法,有效避免了拟合过程。对某小型电动倾转旋翼无人机(UAV)的仿真表明,基于所提方法使得倾转旋翼机平稳、快速地完成模态转换过程;实验数据进一步表明,矫正后广义走廊相比于矫正前可将对过渡走廊的平均跟踪误差显著减小。

本文引用格式

鲁麟宏 , 付荣 , 王勇 , 曾建平 . 基于矫正广义走廊的电动倾转旋翼机模态转换[J]. 航空学报, 2018 , 39(8) : 121900 -121900 . DOI: 10.7527/S1000-6893.2018.21900

Abstract

The control problem of mode conversion of electric tilt rotor aircraft is studied in this paper based on the corrected generalized corridor and online gain-scheduling method. Considering the drawbacks of the traditional trimming approach which omits the dynamic time-varying factors during the conversion process, a new two-step trimming strategy is proposed, that is, correcting the operating points first and then obtaining the corrected generalized corridor. As a result, the deviation between the trim condition and the real operating points of the system is reduced, and hence the performance of the gain-scheduling control is improved. Furthermore, as the workload of designing the conversion controller with the traditional gain-scheduling method is heavy, we develop an online gain-scheduling algorithm to avoid the fitting procedure. Simulation of a small electric tilt rotor Unmanned Aerial Vehicle (UAV) shows that the tilt rotor UAV can complete the mode conversion flight fastly and steadily. It is also found that the average tracking error of the conversion corridor can be reduced significantly with the corrected generalized corridor.

参考文献

[1] HIRSCHBERG M J. An overview of the history of vertical and/or short take-off and landing (V/STOL) aircraft[EB/OL]. (2006-03-31)[2017-06-20]. http://w-ww.pra.org/publicdl/Articles%20General/history_over-view_brief.pdf.
[2] YEO H, JOHNSON W. Performance and design investigation of heavy lift tilt rotor with aerodynamic interference effects[J]. Journal of Aircraft, 2009, 46(4):1231-1239.
[3] AHN O S, KIM J M, LIM C H. Smart UAV research program status update:Achievement of tilt rotor technology development and vision ahead[C]//ICAS 27th Congress of International Council of the Aeronautical Sciences, 2010:4285-4292.
[4] 陈恒, 左晓阳, 张玉琢. 倾转旋翼飞机技术发展研究[J]. 飞行力学, 2007, 25(1):5-8. CHEN H, ZUO X Y, ZHANG Y Z. Tilt rotor aircraft key technology developing research[J]. Flight Dynamics, 2007, 25(1):5-8(in Chinese).
[5] ZHAO W, UNDERWOOD C. Robust transition control of a martian coaxial tilt rotor aerobot[J]. Acta Astronautica, 2014, 99:111-129.
[6] MOORE M D. Personal air vehicles:A rural/regional and intra-urban on-demand transportation system[J]. AIAA Journal, 2003, 41(7):2646-2665.
[7] LI H X, QU X J, WANG W J. Multi-body motion mo-deling and simulation for tilt rotor aircraft[J]. Chinese Journal of Aeronautics, 2010, 23(4):415-422.
[8] ZHANG Y, YE L, YANG S. Numerical study on flow fields and aerodynamics of tilt rotor aircraft in conversion mode based on embedded grid and actuator model[J]. Chinese Journal of Aeronautics, 2015, 28(1):93-102.
[9] 王伟, 段卓毅, 周林. 倾转旋翼机设计特点及难点浅析[J]. 航空科学技术, 2015, 26(3):1-4. WANG W, DUAN Z Y, ZHOU L. Brief analysis on the design features and difficulties of tilt rotor[J]. Aeronautical Science and Technology, 2015, 26(3):1-4(in Chinese).
[10] 王奇, 吴文海. 一种非线性自适应切换控制混合方法及其在倾转旋翼机上的应用[J]. 航空学报, 2015, 36(10):3359-3369. WANG Q. WU W H. A nonlinear adaptive switching control blending method and its application to tilt rotor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3359-3369(in Chinese).
[11] 严旭飞, 陈仁良. 倾转旋翼机动态倾转过渡过程的操纵策略优化[J]. 航空学报, 2017, 38(7):54-64. YAN X F, CHEN R L. Control strategy optimization of dynamic conversion procedure of tilt rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):54-64(in Chinese).
[12] 夏青元, 徐锦法, 张梁. 倾转旋翼飞行器无模型自适应姿态控制[J]. 系统工程与电子技术, 2013, 35(1):146-151. XIA Q Y, XU J F, ZHANG L. Model-free adaptive attitude controller for a tilt rotor aircraft[J]. Systems Engineering and Electronics, 2013, 35(1):146-151(in Chinese).
[13] RYSDYK R T, CALISE A J. Adaptive model inversion flight control for tilt rotor aircraft[J]. Journal of Gui-dance, Control, and Dynamics, 1999, 22(3):402-407.
[14] 孙杰, 杨军. 倾转旋翼机过渡段控制器的μ综合设计方法[J]. 飞行力学, 2008, 26(3):41-43. SUN J, YANG J. Design of flight control system for tilt rotor conversion using μ synthesis[J]. Flight Dynamics, 2008, 26(3):41-43(in Chinese).
[15] YANG X L, FANG Y, ZHU J H. Transition flight control of two vertical/short takeoff and landing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2):371-385.
[16] 孙振, 汪锐, 周文雅. 倾转旋翼机过渡飞行模式的有限时间切换控制[J]. 控制与决策, 2018, 33(2):381-384. SUN Z, WANG R, ZHOU W Y. Finite-time switching control for flight mode transition of tilt rotors[J]. Control and Decision, 2018, 33(2):381-384(in Chinese).
[17] FU R, SUN H F, ZENG J P. Exponential stabilisation of nonlinear parameter-varying systems with applications to conversion flight control of a tilt rotoraircraft[J]. International Journal of Control, 2018(1):1-11.
[18] FLORES G, LOZANO R. A nonlinear control law for hover to level flight for the quad tilt rotor UA-V[C]//Proceedings of the 19th World Congress, the International Federation of Automatic Control(IFAC 2014), 2014:11055-11059.
[19] LIU Z, HE Y Q, YANG L Y, et al. Control tech-niques of tilt rotor unmanned aerial vehicle systems:A review[J]. Chinese Journal of Aeronautics, 2017, 30(1):135-148.
[20] SONG Y G, WANG H J. Design of flight control system for a small unmanned tilt rotor aircraft[J]. Chinese Journal of Aeronautics, 2009, 22(3):250-256.
[21] 陈永, 龚华军, 王彪. 倾转旋翼机过渡段纵向姿态控制技术研究[J]. 飞行力学, 2011, 29(1):30-33. CHEN Y, GONG H J, WANG B. Research on longitudinal attitude control technology of tilt rotor during transition[J]. Flight Dynamics, 2011, 29(1):30-33(in Chinese).
[22] 陈琦, 江涛, 史凤鸣, 等. 倾转三旋翼无人机过渡模式纵向姿态控制[J]. 飞行力学, 2016, 34(6):49-53. CHEN Q, JIANG T, SHI F M,et al. Longitudinal attitude control for a tilt tri-rotor UAV in transition mode[J]. Flight Dynamics, 2016, 34(6):49-53(in Chinese).
[23] SATO M, MURAOKA K. Flight controller designand demonstration of quad-tilt-wing unmanned aerialvehicle[J]. Journal of Guidance, Control, and Dynamics, 2014, 38(6):1071-1082.
[24] DICKESON J J, MILES D, CIFDALOZ O, et al. Robust LPV H gain-scheduled hover-to-cruise con-version for a tilt-wing rotorcraft in the presence ofCG variations[C]//Proceedings of the 46th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2007:2773-2778.
[25] PAPACHRISTOS C, ALEXIS K, TZES A. Model predictive hovering-translation control of an unmanned tri-tiltrotor[C]//2013 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2013:5425-5432.
[26] LEITH D J, LEITHEAD W E. Survey of gain-scheduling analysis and design[J]. International Journal of Control, 2000, 73(11):1001-1025.
[27] SHAMMA J S, ATHANS M. Gain scheduling:Potential hazards and possible remedies[J]. IEEE Control Systems, 1992, 12(3):101-107.
[28] DAI C, BAI H H, ZENG J P. Nonlinear stabilizati-on control of tilt rotor UAV during transition flightbased on HOSVD[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway, NJ:IEEE Press, 2016:154-159.
[29] 贾英民. 鲁棒H 控制[M]. 北京:科学出版社, 2007:128-131. JIA Y M. Robust H control[M]. Beijing:Science Press, 2007:128-131(in Chinese).
[30] SHAHRUZ S M, BEHTASH S. Design of controllers for linear parameter-varying systems by the gain-scheduling technique[J]. Journal of Mathematical Analysis and Applications, 1992, 168(1):195-217.
[31] MARCOS A. A gain scheduled H-infinity controllerfor a re-entry benchmark[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2010:7567-7581.
[32] 宋磊, 杨剑影, 段志生. 多模型切换系统H 鲁棒控制器的设计与应用[J]. 控制理论与应用, 2010, 27(11):1531-1536. SONG L, YANG J Y, DUAN Z S. Design and application of H-infinity robust controller for multi-model switching system[J]. Control Theory & Applications, 2010, 27(11):1531-1536(in Chinese).
文章导航

/