电子电气工程与控制

基于终端滑模的航天器自适应预设性能姿态跟踪控制

  • 马广富 ,
  • 朱庆华 ,
  • 王鹏宇 ,
  • 郭延宁
展开
  • 1. 哈尔滨工业大学 航天学院, 哈尔滨 150001;
    2. 上海航天控制技术研究所, 上海 200233

收稿日期: 2017-09-22

  修回日期: 2018-04-02

  网络出版日期: 2018-04-02

基金资助

国家自然科学基金(61673135,61603114)

Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique

  • MA Guangfu ,
  • ZHU Qinghua ,
  • WANG Pengyu ,
  • GUO Yanning
Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. Shanghai Aerospace Control Technology Institute, Shanghai 200233, China

Received date: 2017-09-22

  Revised date: 2018-04-02

  Online published: 2018-04-02

Supported by

National Natural Science Foundation of China (61673135,61603114)

摘要

针对航天器姿态跟踪控制的快速性需求,提出一类自适应终端滑模有限时间控制方法,通过引入饱和函数解决了终端滑模控制器的奇异问题,并结合实际有限时间稳定概念显式地给出了系统状态收敛时间和收敛范围之间的对应关系;为在提高系统鲁棒性的同时避免控制器抖振,设计了一种新型自适应律估计并补偿未知环境干扰。进一步地,针对如遥感卫星对地扫描成像等姿态跟踪任务中存在的状态约束问题,通过在控制器中引入具有对数形式的预设性能项,使系统滑模面响应具有期望的动态过程,约束了航天器姿态跟踪误差及其一阶导数的变化范围。仿真结果表明,设计的控制器具有较高的控制精度和响应速度,满足实际任务对状态约束的需求,且其控制输出不存在奇异和抖振,具备良好的工程应用价值。

本文引用格式

马广富 , 朱庆华 , 王鹏宇 , 郭延宁 . 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018 , 39(6) : 321763 -321763 . DOI: 10.7527/S1000-6893.2018.21763

Abstract

An adaptive terminal sliding mode based control law is proposed for spacecraft attitude tracking. A saturated function is introduced to avoid sigularity of the traditional terminal sliding mode, and the correspondence between the convergence time and domain of system states is explicitly given based on the concept of practical finite-time stability. To improve the system robusteness and simultaneously elimimate the chattering, a novel adaptive law is developed to estimate and compensate unknown disturbance. Considering the contraints in the process of attitude tracking, a logarithmic-form prescribed-performance term is introduced to ensure a desired transient response of the sliding mode surface and constrain the variation range of the tracking error as well as its first-order derivative. Numerical examples are presented to demonstrate that the control laws developed not only have a high control accuracy and response speed, but also avoid sigularity and chaterring, and thus have great significance in application.

参考文献

[1] LI C J, TEO K L, LI B, et al. A constrained optimal PID-like controller design for spacecraft attitude stabilization[J]. Acta Astronautica, 2012, 74:131-140.
[2] 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报, 2014, 35(1):249-258. HU Q L, JIANG B Y, SHI Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):249-258(in Chinese).
[3] XIAO B, HU Q L, ZHANG Y M. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6):1605-1612.
[4] HONG Y G, JIANG Z P. Finite-time stability of stabilization of nonlinear systems with parametric and dynamic uncertainties[J]. IEEE Transactions on Automatic Control, 2006, 51(12):1950-1956.
[5] DING S H, LI S H, LI Q. Stability Analysis for a second-order continuous finite-time control system subject to a disturbance[J]. Journal of Control Theory Application, 2009, 7(3):271-276.
[6] DU H B, LI S H, QIAN C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization[J]. IEEE Transactions on Automatic Control, 2011, 56(11):2711-2717.
[7] JIN E D, SUN Z W. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control[J]. Aerospace Science and Technology, 2008, 12(4):324-330.
[8] HU Q L, HUO X, XIAO B, et al. Robust finite-time control for spacecraft attitude stabilization under actuator fault[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2012, 226(3):416-428.
[9] LI S H, WANG Z, FEI S M. Comments on the paper:Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control[J]. Aerospace Science and Technology, 2011, 15(3):193-195.
[10] WANG L Y, CHAI T Y, ZHAI L F. Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9):3296-3304.
[11] ZUO Z Y. Non-singular fixed-time terminal sliding mode control of non-linear systems[J]. IET Control Theory and Applications, 2015, 9(4):545-552.
[12] ZUO Z Y. Nonsingular fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica, 2015, 54(3):305-309.
[13] FENG Y, YU X H, HAN F L. On nonsingular terminal sliding-mode control of nonlinear systems[J]. Automatica, 2013, 49(6):1715-1722.
[14] GUO Y, SONG S M, LI X H. Quaternion-based finite-time control for attitude tracking of the spacecraft without unwinding[J]. International Journal of Control, Automation and Systems, 2015, 13(6):1351-1359.
[15] ZHANG C, SUN Y C, MA G F, et al. Global sliding mode attitude control for flexible satellite with a rotating antenna[C]//Proceedings of the 34th Chinese Control Conference, 2015:5337-5341.
[16] WIE B, BAILEY D, HEIBERG C. Rapid multitarget acquisition and pointing control of agile spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1):96-104.
[17] HU Q L, LI B, ZHANG Y M. Robust attitude control design for spacecraft under assigned velocity and control constraints[J]. ISA Transactions, 2013, 52(4):480-493.
[18] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099.
[19] KOSTARIGKA A K, DOULGERI Z, ROVITHAKIS G A. Prescribed performance tracking for flexible joint robots with unknown dynamics and elasticity[C]//IEEE International Conference on Robotics and Automation.Piscataway, NJ:IEEE Press, 2012:5365-5370.
[20] BU X W, WU X Y, ZHU F J, et al. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors[J]. ISA Transactions, 2015, 59:149-159.
[21] HAN S I, LEE J Y. Finite-time sliding surface constrained control for a robot manipulator with an unknown deadzone and disturbance[J]. ISA Transactions, 2016, 65:307-318.
[22] ZHU Z, XIA Y Q, FU M Y. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. International Journal of Robust and Nonlinear Control, 2015, 21(6):686-702.
[23] ZHOU J L, YANG J Y. Smooth sliding mode control for missile interception with finite-time convergence[J]. Journal of Guidance, Control, and Dynamics, 2015, 38:1-8.
[24] HU Q L, SHAO X D. Smooth finite-time fault-tolerant attitude tracking control for rigid spacecraft[J]. Aerospace Science and Technology, 2016, 55:144-157.
[25] 胡庆雷, 王辉, 石忠, 等. 航天器新型非奇异饱和终端滑模姿态控制[J]. 宇航学报, 2015, 36(4):430-437. HU Q L, WANG H, SHI Z,et al. Novel non-singular saturated terminal sliding mode based attitude controller for spacecraft[J]. Journal of Astronautics, 2015, 36(4):430-437(in Chinese).
文章导航

/