材料工程与机械制造

基于位姿可达空间的太空机械臂容错路径规划

  • 贾庆轩 ,
  • 王宣 ,
  • 陈钢 ,
  • 孙汉旭 ,
  • 郭雯
展开
  • 北京邮电大学 自动化学院, 北京 100876

收稿日期: 2018-01-06

  修回日期: 2018-03-19

  网络出版日期: 2018-03-19

基金资助

国家自然科学基金(61573066,61403038);国家"973"计划(2013CB733000)

A fault tolerant path planning method for space manipulator based on position and orientation reachable space

  • JIA Qingxuan ,
  • WANG Xuan ,
  • CHEN Gang ,
  • SUN Hanxu ,
  • GUO Wen
Expand
  • School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received date: 2018-01-06

  Revised date: 2018-03-19

  Online published: 2018-03-19

Supported by

National Natural Science Foundation of China (61573066,61403038);National Basic Research Program of China (2013CB733000)

摘要

为了使太空机械臂在关节锁定故障后仍能继续完成后续任务,提出一种基于位姿可达空间的太空机械臂容错路径规划方法。基于牛顿-拉夫逊法计算太空机械臂关节人为限位,完成满足任务需求的退化工作空间求解,通过构造姿态可达度指标,在退化工作空间的基础上建立故障机械臂基坐标系下的位姿可达空间。通过在代价函数中增加最小奇异值代价项改进传统A*算法,基于改进A*算法在所建立的位姿可达空间内完成太空机械臂容错路径规划。所提方法综合了位姿可达空间与改进A*算法各自的优势,实现了关节锁定故障太空机械臂同时满足避奇异与位姿可达要求的轨迹搜索。通过建立7自由度太空机械臂运动学模型开展数值仿真研究,仿真结果验证了所提容错路径规划方法的有效性。

本文引用格式

贾庆轩 , 王宣 , 陈钢 , 孙汉旭 , 郭雯 . 基于位姿可达空间的太空机械臂容错路径规划[J]. 航空学报, 2018 , 39(8) : 422000 -422000 . DOI: 10.7527/S1000-6893.2018.22000

Abstract

In order that the space manipulator can complete follow-up tasks after the joint-locked failure, a fault tolerant path planning method for the space manipulator is proposed based on position and orientation reachable space. The Newton-Raphson method is used to compute artificial joint limits of the space manipulator, and the degraded workspace that can meet the task requirements is obtained. By constructing orientation reachability indexes, the position and orientation reachable space relative to base calibration is then established. The traditional A* algorithm is evolved by adding the minimum singular value cost to the evaluation function. In the established position and orientation reachable space, the fault tolerant path planning of the space manipulator is realized by the evolved A* algorithm. The proposed method, which integrates the advantages of the position and orientation reachable space and the evolved A* algorithm, realizes trajectory searching of the space manipulator and meet the requirements for singularity avoiding and reachability of position and orientation after the joint-locked failure. A kinematic model for the 7-DOF manipulator is built, and numerical simulation is carried out. Simulation results verify the effectiveness of the proposed method.

参考文献

[1] IQBAL J, ISLAM R U, ABBAS S Z, et al. Automating industrial tasks through mechatronic systems-A review of robotics in industrial perspective[J]. Tehnicki Vjesnik, 2016, 23(3):917-924.
[2] 温卓漫, 王延杰, 邸男, 等. 空间站机械臂位姿测量中合作靶标的快速识别[J]. 航空学报, 2015, 36(4):1330-1338. WEN Z M, WANG Y J, DI N, et al. Fast recognition of cooperative target used for position and orientation measurement of space station's robot arm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1330-1338(in Chinese).
[3] JIA Q X, LI T, CHEN G, et al. Velocity jump reduction for manipulator with single joint failure[C]//The 2014 IEEE International Conference on Multisensor Fusion and Information Integration for Intelligent Systems. Piscataway, NJ:IEEE Press, 2014:1-6.
[4] MU Z G, ZHANG B, XU W F, et al. Fault tolerance kinematics and trajectory planning of a 6-DOF space manipulator under a single joint failure[C]//The 2016 IEEE International Conference on Real-Time Computing and Robotics. Piscataway, NJ:IEEE Press, 2016:483-488.
[5] XU W F, SHE Y, XU Y S. Analytical and semi-analytical inverse kinematics of SSRMS-type manipulators with single joint locked failure[J]. Acta Astronautica, 2014, 105(1):201-217.
[6] ROBERTS R G, JAMISOLA R S, MACIEJEWSKI A A. Identifying the failure-tolerant workspace boundaries of a kinematically redundant manipulator[C]//The 2007 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2007:4517-4523.
[7] LEWIS C L, MACIEJEWSKI A A. Fault tolerant operation of kinematically redundant manipulators for locked joint failures[J]. IEEE Transactions on Robotics & Automation, 1997, 13(4):622-629.
[8] HOOVER R C, ROBERTS R G, MACIEJEWSKI A A. Implementation issues in identifying the failure-tolerant workspace boundaries of a kinematically redundant manipulator[C]//The 2007 IEEE International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2007:3528-3533.
[9] HOOVER R C, ROBERTS R G, MACIEJEWSKI A A, et al. Designing a failure-tolerant workspace for kinematically redundant robots[J]. IEEE Transactions on Automation Science & Engineering, 2015, 12(4):1421-1432.
[10] YANG C F, ZHENG S T, JIN J, et al. Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method[J]. Journal of Central South University of Technology, 2010, 17(6):1264-1270.
[11] MIAO C, LI J. Autonomous landing of small unmanned aerial rotorcraft based on monocular vision in GPS-denied area[J]. Acta Automatica Sinica, 2015, 2(1):109-114.
[12] XU W F, PENG J Q, LIANG B, et al. Hybrid modeling and analysis method for dynamic coupling of space robots[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(1):85-98.
[13] LENG Y Q, YANG Z, WEI Z, et al. Attitude analysis of reachable space for spatial manipulator[C]//The 27th Chinese Control and Decision Conference, 2015:4927-4931.
[14] JIA Q X, LI T, CHEN G, et al. Trajectory optimization for velocity jumps reduction considering the unexpectedness characteristics of space manipulator joint-locked failure[J]. International Journal of Aerospace Engineering, 2016, 2016(7):1-14.
[15] 田华亭, 李涛, 秦颖. 基于A*改进算法的四向移动机器人路径搜索研究[J]. 控制与决策, 2017, 32(6):1007-1012. TIAN H T, LI T, QIN Y. Research of four-way mobile robot path search based on improved A* algorithm[J]. Control and Decision, 2017, 32(6):1007-1012(in Chinese).
[16] 李冲, 张安, 毕文豪. 单边矩形扩展A~*算法[J]. 机器人, 2017, 39(1):46-56. LI C, ZHANG A, BI W H. Single-boundary rectangle expansion A~* algorithm[J]. Robot, 2017, 39(1):46-56(in Chinese).
[17] ELHALAWANY B M, ABDEL-KADER H M, TAGELDEEN A, et al. Modified a algorithm for safer mobile robot navigation[C]//The 2013 IEEE International Conference on Modelling, Identification & Control. Piscataway, NJ:IEEE Press, 2013:74-78.
[18] 关晓颖, 陈果, 林桐. 特征选择的多准则融合差分遗传算法及其应用[J]. 航空学报, 2016, 37(11):3455-3465. GUAN X Y, CHEN G, LIN T. Feature selection method based on differential evolution and genetic algorithm with multi-criteria evaluation and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3455-3465(in Chinese).
[19] 邱涤珊, 郭浩, 贺川, 等. 敏捷成像卫星多星密集任务调度方法[J]. 航空学报, 2013, 34(4):882-889. QIU D S, GUO H, HE C, et al. Intensive task scheduling method for multi-agile imaging satellites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):882-889(in Chinese).
[20] WANG M, LUO J, WALTER U. Trajectory planning of free-floating space robot using particle swarm optimization[J]. Acta Astronautica, 2015, 112(1):77-88.
[21] OZDEMIR M. Singularity robust balancing of parallel manipulators following inconsistent trajectories[J]. Robotica, 2016, 34(9):2027-2038.
[22] 袁文翀, 王从庆, 武和雷, 等. 自由浮动空间冗余度机械臂避奇异规化的混沌运动抑制控制[J]. 计算机与现代化, 2012, 2012(2):56-60. YUAN W C, WANG C Q, WU H L, et al. Chaos suppression control for free-floating space redundant manipulator during avoidance singularity[J]. Computer and Modernization, 2012, 2012(2):56-60(in Chinese).
[23] QIU C W, CAO Q X, MIAO S H. An on-line task modification method for singularity avoidance of robot manipulators[J]. Robotica, 2009, 27(4):539-546.
[24] 徐文福, 梁斌, 刘宇, 等. 一种新的PUMA类型机器人奇异回避算法[J]. 自动化学报, 2008, 34(6):670-675. XU W F, LIANG B, LIU Y, et al. A novel approach to avoid singularities of PUMA-type manipulators[J]. Acta Automatica Sinica, 2008, 34(6):670-675(in Chinese).
[25] LUO J J, ZONG L J, WANG M M, et al. Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects[J]. Acta Astronautica, 2017, 136(1):380-386.
[26] SHE Y, XU W F, SU H J, et al. Fault-tolerant analysis and control of SSRMS-type manipulators with single-joint failure[J]. Acta Astronautica, 2016, 120(1):270-286.
[27] HE B, HE X L, HAN L Z, et al. Working space analysis and simulation of modular service robot arm based on Monte Carlo method[J]. Applied Mechanics & Materials, 2010, 34-35:1104-1108.
[28] 赵京, 缪萍, 荆红梅. 冗余度机械臂关节运动和末端运动的同步容错规划[J]. 机械工程学报, 2003, 39(3):53-57. ZHAO J, MIAO P, JING H M. Synchronous fault-tolerant planning of joint motion and end motion of redundant manipulators[J]. Journal of Mechanical Engineering, 2003, 39(3):53-57(in Chinese).
[29] DONG H, DU Z, CHIRIKJIAN G S. Workspace density and inverse kinematics for planar serial revolute manipulators[J]. Mechanism & Machine Theory, 2013, 70(6):508-522.
文章导航

/