电子电气工程与控制

平滑重构稀疏贝叶斯学习测向算法

  • 陈璐 ,
  • 毕大平 ,
  • 潘继飞
展开
  • 1. 国防科技大学 电子对抗学院, 长沙 410073;
    2. 安徽省电子制约技术重点实验室, 合肥 230037

收稿日期: 2018-02-07

  修回日期: 2018-03-15

  网络出版日期: 2018-03-14

基金资助

国家自然科学基金(61671453);安徽省自然科学基金(1608085MF123)

A direction finding algorithm based on smooth reconstruction sparse Bayesian learning

  • CHEN Lu ,
  • BI Daping ,
  • PAN Jifei
Expand
  • 1. College of Electronic Countermeasures, National University of Defense Technology, Changsha 410073, China;
    2. Anhui Province Key Laboratory of Electronic Restriction, Hefei 230037, China

Received date: 2018-02-07

  Revised date: 2018-03-15

  Online published: 2018-03-14

Supported by

National Natural Science Foundation of China (61671453); Natural Science Foundation of Anhui Province (1608085MF123)

摘要

针对二级嵌套阵列中的紧凑阵元结构易受互耦效应影响的问题,提出了两种不同的嵌套阵列结构改进方法:连续平移嵌套阵列和间隔平移嵌套阵列。通过对原有二级嵌套阵列阵元位置进行调整,形成了两种不同的平移嵌套阵列结构,这两种结构对应的差分共阵均"无孔",并且测向自由度和阵列稀疏度均大于原二级嵌套阵列。针对嵌套阵列的差分共阵测向模型为单测量矢量模型,稀疏贝叶斯学习测向算法复杂度高的问题,提出了平滑重构稀疏贝叶斯学习算法。该算法通过空间平滑重构将单测量矢量模型变为多测量矢量模型,降低了观测矩阵的维度,减小了计算复杂度。算法求解时,通过对变换后的观测矩阵进行奇异值分解,进一步降低了观测矩阵维度,利用稀疏贝叶斯学习算法估计辐射源角度。仿真表明,在信噪比和采样数相同的条件下,该算法收敛速度比单测量矢量稀疏贝叶斯学习(SMV-SBL)算法快,且测向精度高于SMV-SBL算法和空间平滑多重信号分类(MUSIC)算法;存在互耦影响时,两种平移嵌套阵列比原嵌套阵列受互耦影响小。

本文引用格式

陈璐 , 毕大平 , 潘继飞 . 平滑重构稀疏贝叶斯学习测向算法[J]. 航空学报, 2018 , 39(6) : 322087 -322087 . DOI: 10.7527/S1000-6893.2018.22087

Abstract

The compact array structure in the two-level nested array is subject to mutual coupling effects. To solve this problem, a method for improving two different nested array structures (continuous translational nested array and spaced translational nested array structures) is proposed. By adjusting the position of the element of the original two-level nested array, two different translational nested array structures are formed. The difference coarrays of these two structures are both "no hole", and the degree of freedom and array sparsity are larger than those of the original nested array. The direction finding model for difference coarray of the nested array is a single measurement vector model; therefore, the sparse Bayesian learning direction finding algorithm has high complexity. In view of this problem, a restructure sparse Bayesian learning algorithm is proposed. In this algorithm, the single measurement vector model is changed into a multi-measurement vector model via spatial smoothing. Singular value decomposition is applied to the transformed observation matrix to reduce the dimensionality and the computational complexity. Simulation results show that when the signal-to-noise ratio and number of samples are the same, the proposed algorithm converges faster than Single Measurement Vector Sparse Bayesian Learning (SMV-SBL), and the accuracy of direction finding with the proposed algorithm is higher than that with SMV-SBL and spatial smoothing Multiple Signal classification (MUSIC) algorithm. In the presence of mutual coupling, the two translational nested arrays are less affected by the coupling than the original nested array.

参考文献

[1] ZHANG Y, NG B P. MUSIC-Like DOA estimation without estimating the number of sources[J]. IEEE Transactions on Signal Processing, 2010, 58(3):1668-1676.
[2] SUN F, GAO B, CHEN L, et al. A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[J]. Sensors, 2016, 16(9):1367.
[3] MA Y, CHEN B, YANG M, et al. A novel ESPRIT-based algorithm for DOA estimation with distributed subarray antenna[J]. Circuits Systems & Signal Processing, 2015, 34(9):2951-2972.
[4] LI T, NEHORAI A. Maximum likelihood direction-of-arrival estimation of underwater acoustic signals containing sinusoidal and random components[J]. IEEE Transactions on Signal Processing, 2011, 59(11):5302-5314.
[5] QIN S, ZHANG Y D, AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6):1377-1390.
[6] HAN K Y, NEHORAI A. Nested array processing for distributed sources[J]. IEEE Signal Processing Letters, 2014, 21(9):1111-1114.
[7] HAN K Y, NEHORAI A. Improved source number detection and direction estimation with nested arrays and ULAs using jackknifing[J]. IEEE Transactions on Signal Processing, 2013, 61(23):6118-6128.
[8] YU Y, LUI H S, NIOW C H, et al. Improved DOA estimations using the receiving mutual impedances for mutual coupling compensation:An experimental study[J]. IEEE Transactions on Wireless Communications, 2011, 10(7):2228-2233.
[9] LIU C L, VAIDYANATHAN P P. Hourglass arrays and other novel 2-D sparse arrays with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(13):3369-3383.
[10] ROCCA P, HAN M, SALUCCI M, et al. Single-snapshot DOA estimation in array antennas with mutual coupling through a multi-scaling Bayesian compressive sensing strategy[J]. IEEE Transactions on Antennas & Propagation, 2017,65(6):3203-3213.
[11] AKSOY T, TUNCER T E. Measurement reduction for mutual coupling calibration in DOA estimation[J]. Radio Science, 2012, 47(3):1-9.
[12] DAI J, BAO X, HU N, et al. A recursive rare algorithm for DOA estimation with unknown mutual coupling[J]. IEEE Antennas & Wireless Propagation Letters, 2014, 13(5):1593-1596.
[13] MAO W, LI G, XIE X, et al. DOA estimation of coherent signals based on direct data domain under unknown mutual coupling[J]. IEEE Antennas & Wireless Propagation Letters, 2014, 13:1525-1528.
[14] LIU C L, VAIDYANATHAN P P. Super nested arrays:Linear sparse arrays with reduced mutual coupling-Part Ⅰ:Fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15):3997-4012.
[15] LIU C L, VAIDYANATHAN P P. Super nested arrays:Linear sparse arrays with reduced mutual coupling-Part Ⅱ:High-order extensions[J]. IEEE Transactions on Signal Processing, 2016, 64(16):4203-4217.
[16] PAL P, VAIDYANATHAN P P. Nested arrays:A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8):4167-4181.
[17] PAL P, VAIDYANATHAN P P. Nested arrays in two dimensions, part Ⅰ:Geometrical considerations[J]. IEEE Transactions on Signal Processing, 2012, 60(9):4694-4705.
[18] FANG J, LI J, SHEN Y, et al. Super-resolution compressed sensing:An iterative reweighted algorithm for joint parameter learning and sparse signal recovery[J]. IEEE Signal Processing Letters, 2014, 21(6):761-765.
[19] HAWES M, MIHAYLOVA L, SEPTIER F, et al. Bayesian compressive sensing approaches for direction of arrival estimation with mutual coupling effects[J]. IEEE Transactions on Antennas & Propagation, 2017, 65(3):1357-1368.
[20] YANG X, CHI C K, ZHENG Z. Direction-of-arrival estimation of incoherently distributed sources using Bayesian compressive sensing[J]. IET Radar Sonar & Navigation, 2016, 10(6):1057-1064.
[21] 孙磊, 王华力, 许广杰, 等. 基于稀疏贝叶斯学习的高效DOA估计方法[J]. 电子与信息学报, 2013, 35(5):1196-1201. SUN L, WANG L H, XU G J, et al. Efficient direction-of-arrival estimation via sparse Bayesian learning[J]. Journal of Electronics & Information Technology, 2013, 35(5):1196-1201.(in Chinese).
[22] LI H, YUAN Z. Single-channel compressive sensing for DOA estimation via sensing model optimization[J]. International Journal of Communications Network & System Sciences, 2017, 10(5):191-201.
文章导航

/