高超声速飞行器热环境测量数据一直是防热设计和考核的基准数据,也是热环境计算方法的考核性数据,其准确性至关重要。针对热流测量中遇到的传感器表面和周边防热材料温度差异而导致的测量数据偏差问题,采用基于Navier-Stokes方程的自研程序开展了详细的气动热环境数值模拟,得到了不同温差条件下传感器表面热环境的分布规律,并根据场协同理论分析了局部热流变化的成因机理,研究了影响热流变化幅值的主要因素。结果表明:①当传感器和其周边材料的温度存在一定的差异时,导致该区域近壁面流场中的压力、密度等特征量梯度增大,改变了传感器当地的法向速度和温度分布,造成了局部热流的剧烈变化。②相同来流马赫数和高度下,来流攻角主要影响法向速度的分布,从而影响气动加热量,攻角越大,相同温差下加热量上升的幅度越小;来流总温主要影响法向温度梯度的分布,从而影响气动加热量,来流总温越大在相同温差条件下加热量上升幅度越小。所开展的研究工作可加深对传感器局部热环境分布规律的认识,避免对测量热流的误判,提升数据判断和分析的可靠性。
As the benchmark data for the design and evaluation of the thermal protection system, as well as the assessment data of the calculation method, the accuracy of thermal environment measurement data is of great importance. In this paper, the measurement discrepancy caused by the difference between the sensor surface and the surrounding heat-resistant material temperature is studied. A numerical stimulation program based on Navier-Stokes equations is used to calculate the heat flux distribution on the sensor and peripheral area of the sensor, and the mechanism of local heat flux changes and the main factors influencing the thermal environment change are studied by the field-coordination theory. The results indicate that when there is difference between the temperature of the sensor surface and the peripheral material, the temperature and pressure of the local flow field is changed, causing dramatic changes of the heat flux on sensor surface. When the Mach number and altitude of the flux are the same, the angle of attack of the flux mainly affects the distribution of normal velocity:as the temperature difference remains the same, the larger the angle of attack, the smaller the increase in aeroheating. The total temperature of the flux mainly affects the distribution of normal temperature gradient:as the temperature difference remains the same, the larger the total temperature, the smaller the increase in aeroheating. The study can avoid misjudgment of the measured heat flux, providing a method for analyzing and validating thermal environment test data.
[1] ROGER K. Aerothermal design for the HIFIRE flight vehicle:AIAA-2009-4034[R]. Reston, VA:AIAA, 2009.
[2] THOMAS J J, JONATHAN P. HIFiRE-5b heat flux and boundary-layer transition:AIAA-2017-3134[R]. Reston, VA:AIAA, 2017.
[3] ADAMCZAK D, BORG M, JULIANO T, et al. HIFiRE-1 and HIFiRE-5 test results:ADA605731[R]. Fort Belvoir, VA:Defense Technical Information Center, 2014.
[4] ANDREW J N, RISHABH C. Measurement of aerothermal heating on HIFiRE-0:AIAA-2011-2356[R]. Reston, VA:AIAA, 2011.
[5] ECKERT E R G, GOLDSTEIN R J. Measurement techniques in heat transfer:AGARD-130[R]. Neuilly sur Seine:AGARD, 1970.
[6] COOK W J, FELDERMAN E J. Reduction of data from thin-film heat transfer gages:A concise numerical technique[J]. AIAA Journal, 1966, 4(3):561-562.
[7] COOK W J. Unsteady heat transfer to a semi-infinite solid with arbitrary surface temperature history and variable thermal properties:ISU-ERI-AMES-675000[R]. Ames, IA:IOWA State University,1970.
[8] MATTHEWS R K, RHUDY R W. Hypersonic wind tunnel test techniques:ADA284057[R]. Fort Belvoir, VA:Defense Technical Information Center, 1994.
[9] 曾磊. 测热试验数据后处理方法及误差机理法分析[D]. 绵阳:中国空气动力研究与发展中心, 2012:140-150. ZENG L. Study on data processing method and error mechanism analysis of heat flux measurement in wind tunnel[D]. Mianyang:China Aerodynamics Research and Development Center, 2012:140-150(in Chinese).
[10] 曾磊, 桂业伟, 王安龄, 等. 激波风洞驻点热流测量误差机理及其不确定度研究[J]. 实验流体力学, 2015, 29(5):15-25. ZENG L, GUI Y W, WANG A L, et al. Study on error mechanism and uncertainty assessment of heat flux measurement in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5):15-25(in Chinese).
[11] DE BAAR J H S, VENNIK J, NEELY A J. Numerical study of the influence of non-uniform wall temperature distribution on the hypersonic flow over a flat plate:AIAA-2017-2427[R]. Reston, VA:AIAA, 2017.
[12] 张昊元, 宗文刚. 高超声速飞行器前缘缝隙流动数值模拟研究[J]. 宇航学报, 2014, 35(8):893-900. ZHANG H Y, ZONG W G. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8):893-900(in Chinese).
[13] 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11):3515-3521. QIU B, ZHANG H Y, GUO Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3515-3521(in Chinese).
[14] 杨肖峰, 唐伟, 桂业伟, 等. 火星环境高超声速催化加热特性[J]. 宇航学报, 2017, 38(2):205-211. YANG X F, TANG W, GUI Y W, et al. Hypersonic catalytic aeroheating characteristics for mars entry process[J]. Journal of Astronautics, 2017, 38(2):205-211(in Chinese).
[15] 过增元, 魏澍, 陈新广. 换热器强化的场协同原则[J]. 科学通报, 2003, 48(22):2324-2327. GUO Z Y, WEI S, CHEN X G. Principle of field coordination in heat exchanger[J]. Chinese Science Bulletin, 2003, 48(22):2324-2327(in Chinese).
[16] 过增元. 换热器中的场协同原则及其应用[J]. 机械工程学报, 2003, 39(12):1-9. GUO Z Y. Principle of field coordination in heat exchanger and its application[J]. Chinese Journal of Mechanical Engineering, 2003, 39(12):1-9(in Chinese).
[17] 邱波, 国义军, 张昊元, 等. 来流参数对防热瓦横缝旋涡结构及热环境的影响[J]. 航空学报, 2016, 37(3):761-770. QIU B, GUO Y J, ZHANG H Y, et al. Free stream parameters' effects on vortexes and aerodynamic heating environment in thermal protection tile transverse gaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):761-770(in Chinese).
[18] 董维中, 高铁锁, 丁明松. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1):311-324. DONG W Z, GAO T S, DING M S. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324(in Chinese).