流体力学与飞行力学

压力振荡对气液同轴离心式喷嘴自激振荡的影响

  • 康忠涛 ,
  • 王振国 ,
  • 李清廉 ,
  • 成鹏
展开
  • 1. 中国空气动力研究与发展中心 超高速空气动力研究所 高超声速冲压发动机技术重点实验室, 绵阳 621000;
    2. 国防科技大学 高超声速冲压发动机技术重点实验室, 长沙 410073

收稿日期: 2018-01-03

  修回日期: 2018-03-01

  网络出版日期: 2018-03-01

基金资助

新世纪优秀人才支持计划(NCET-13-0156);国家自然科学基金(11472303,11402298);国家"973"计划(613239)

Influence of pressure oscillation on self-pulsation of gas-liquid swirl coaxial injector

  • KANG Zhongtao ,
  • WANG Zhenguo ,
  • LI Qinglian ,
  • CHENG Peng
Expand
  • 1. Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China

Received date: 2018-01-03

  Revised date: 2018-03-01

  Online published: 2018-03-01

Supported by

Program for New Century Excellent Talents in University (NCET-13-0156); National Natural Science Foundation of China (11472303, 11402298); National Basic Research Program of China (613239)

摘要

为了研究供应系统振荡对气液同轴离心式喷嘴自激振荡的影响,采用水和空气作为模拟介质,开展了室压条件下冷态喷雾试验。通过试验分析了供应系统有/无振荡两种情况下离心式喷嘴的喷雾形态,以及供应系统有/无振荡两种情况下气液同轴离心式喷嘴自激振荡的喷雾形态。发现当离心式喷嘴供应系统振荡时,离心式喷嘴产生的锥形液膜也周期性地振荡,同时出现Klystron效应。液膜周期性振荡以及Klystron效应出现的频率与供应系统振荡频率一致。Klystron效应的出现使得喷雾锥角突然减小,锥形液膜发生折叠。供应系统振荡对自激振荡喷雾形态也有显著影响。供应系统振荡引起的Klystron效应使得液膜锥角减小,从而造成"圣诞树"型自激振荡喷雾上的"树枝"增多,同时自激振荡频率增加。这是因为当速度大的液膜追上速度小的液膜时,就会产生Klystron效应并使液膜速度增加。而液膜运动速度越大自激振荡频率也就越大。虽然在供应系统中施加激励没有发生"锁频"现象,但是自激振荡的强度在一定程度上减弱,并且伴随着自激振荡的"分频"现象,即自激振荡频率从一个主频向两侧分化为两个主频。

本文引用格式

康忠涛 , 王振国 , 李清廉 , 成鹏 . 压力振荡对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2018 , 39(6) : 121988 -121988 . DOI: 10.7527/S1000-6893.2018.21988

Abstract

To understand the influence of pressure oscillation on the self-pulsation characteristics of the gas-liquid swirl coaxial injector, non-reactive spray experiments are conducted with water and air at atmospheric pressure. The spray morphology of the pressure swirl injector with and without pressure oscillation is investigated, and that of the gas-liquid swirl coaxial injector with and without the pressure oscillation when self-pulsation occurs is also investigated. The results indicate that the conical liquid film produced by the pressure swirl injector oscillates periodically with the pressure oscillation in the supply system, and the Klystron effect occurs simultaneously. The frequency of the conical liquid film oscillation and the Klystron effect occurrence is consistent with that of pressure oscillation in the supply system. The Klystron effect decreases the spray cone angle, and wrinkles the conical liquid film. The self-pulsated spray morphology of the gas-liquid swirl coaxial injector is also significantly influenced by the pressure oscillation in the supply system. The decrease of the spray cone angle caused by the Klystron effect increases the branches of the Christmas tree and the frequency of self-pulsation. This is because the Klystron effect occurs when the faster liquid film overtake the slower liquid film, which increases the velocity of the liquid film. And the larger the liquid film velocity, the larger the self-pulsation frequency. Although frequency locking does not occur with pressure oscillation, the strength of self-pulsation is decreased to some extent, and one dominant self-pulsation frequency evolves into two domain frequencies.

参考文献

[1] IM J H, KIM D, YOON Y, et al. Self-pulsation characteristics of a swirl coaxial injector with various injection and geometric conditions:AIAA-2005-3749[R]. Reston, VA:AIAA, 2005.
[2] BAZAROV V G, YANG V. Liquid-propellant rocket engine injector dynamics[J]. Journal of Propulsion and Power, 1998, 14(5):797-806.
[3] NUNOME Y, TAMURA H, ONODERA T, et al. Effect of liquid disintegration on flow instability in a recessed region of a shear coaxial injector:AIAA-2009-5389[R]. Reston, VA:AIAA, 2009.
[4] IM J H, YOON Y. The effects of the ambient pressure on self-pulsation characteristics of a gas/liquid swirl coaxial injector:AIAA-2008-4850[R]. Reston, VA:AIAA, 2008.
[5] SIVAKUMAR D, KULKARNI V. Regimes of spray formation in gas-centered swirl coaxial atomizers[J]. Experimental Fluids, 2011, 51(3):587-596.
[6] IM J H, KIM D, HAN P, et al. Self-pulsation characteristics of a gas-liquid swirl coaxial injector[J]. Atomization and Sprays, 2009, 19(1):57-74.
[7] SASAKI M, SAKAMOTO H, TAKAHASHI M, et al. Comparative study of recessed and non-recessed swirl coaxial injectors:AIAA-1997-2907[R]. Reston, VA:AIAA, 1997.
[8] BAZAROV V G. Self-pulsations in coaxial injectors with central swirl liquid stage:AIAA-1995-2358[R]. Reston, VA:AIAA, 1995.
[9] BAZAROV V G. Non-linear interactions in liquid-propellant rocket engine injectors:AIAA-1998-4039[R]. Reston, VA:AIAA, 1998.
[10] YANG L J, GE M H, ZHANG M Z, et al. Spray characteristics of recessed gas-liquid coaxial swirl injector[J]. Journal of Propulsion and Power, 2008, 24(6):1332-1339.
[11] 康忠涛, 张新桥, 成鹏, 等. 气核尺寸对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2014, 35(12):3283-3292. KANG Z T, ZHANG X Q, CHENG P, et al. Influence of gas core dimension on self-pulsation of gas-liquid swirl coaxial injector[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3283-3292(in Chinese).
[12] FU Q F, YANG L J. Theoretical investigation on the dynamics of a gas-liquid coaxial swirl injector[J]. Journal of Propulsion and Power, 2011, 27(1):144-150.
[13] HUANG Y, ZHOU J, HU X, et al. Acoustic model for the self-oscillation of coaxial swirl injector:AIAA-1997-3328[R]. Reston, VA:AIAA, 1997.
[14] EBERHART C J, LINEBERRY D M, FREDERICK R A. Detailing the stability boundary of self-pulsations for a swirl-coaxial injector element:AIAA-2013-4064[R]. Reston, VA:AIAA, 2013.
[15] LI Q, KANG Z, ZHANG X, et al. Effect of recess length on the spray characteristics of liquid-centered swirl coaxial injectors[J]. Atomization and Sprays, 2016, 26(6):535-550.
[16] KANG Z T, LI Q L, CHENG P, et al. Effects of recess on the self-pulsation characteristics of liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2016, 32(5):1124-1132.
[17] IM J H, SEONGHO C, YOON Y, et al. Comparative study of spray characteristics of gas-centered and liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2010, 26(6):1196-1204.
[18] KANG Z T, LI Q L, CHENG P, et al. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector[J]. Acta Astronautica, 2016, 127(1):249-259.
[19] LIEUWEN T C. Unsteady combustor physics[M]. Cambridge:Cambridge University Press, 2012:90-93.
[20] RICHECOEUR F. Experimentations and simulations numeric on interaction modes acoustic transve at flames cryotechniques[D]. Paris:Ecole Centrale Paris, 2006:68-95.
[21] RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Experimental investigation of high-frequency combustion instabilities in liquid rocket engine[J]. Acta Astronautica, 2008, 62(1):18-27.
[22] RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Effect of temperature fluctuations on high frequency acoustic coupling[J]. Proceedings of the Combustion Institute, 2009, 32(2):1663-1670.
[23] RICHECOEUR F, SCOUFLAIRE P, DUCRUIX S, et al. Interactions between propellant jets and acoustic modes in liquid rocket engines:Experiments and simulations:AIAA-2006-4397[R]. Reston, VA:AIAA, 2006.
[24] HARDI J S, SCOTT B, MICHAEL O, et al. Coupling behaviour of LOx/H2 flames to longitudinal and transverse acoustic instabilities:AIAA-2012-4087[R]. Reston, VA:AIAA, 2012.
[25] HARDI J S, MARTINEZ H C G, OSCHWALD M, et al. LOx jet atomization under transverse acoustic oscillations[J]. Journal of Propulsion and Power, 2014, 30(2):337-349.
[26] MÉRY Y, HAKIM L, SCOUFLAIRE P, et al. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations[J]. Comptes Rendus Mecanique, 2013, 341(1-2):100-109.
[27] YI T, SANTAVICCA D A. Forced flame response of turbulent liquid-fueled lean-direct-injection combustion to fuel modulations[J]. Journal of Propulsion and Power, 2009, 25(6):1259-1271.
[28] LIU J, ZHANG X Q, LI Q L, et al. Effect of geometric parameters on the spray cone angle in the pressure swirl injector[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(2):342-353.
[29] CHENG P, KANG Z, CHEN H, et al. Influence of pressure oscillation induced klystron effect on the inner flow and spray characteristics of pressure swirl injector[C]//Proceedings of the 18th Annual Conference on Liquid Atomization and Spray Systems-Asia, 2016:1-8.
文章导航

/