固体力学与飞行器总体设计

低速冲击下金属蜂窝夹芯板抗侵彻性能的试验研究

  • 陈尚军 ,
  • 秦庆华 ,
  • 张威 ,
  • 夏元明 ,
  • 于学会 ,
  • 张建勋 ,
  • 王彬文 ,
  • 王铁军
展开
  • 1. 西安交通大学 航天航空学院, 机械结构强度与振动国家重点实验室, 西安 710049;
    2. 航空工业飞机强度研究所, 西安 710065

收稿日期: 2017-06-05

  修回日期: 2017-11-03

  网络出版日期: 2018-02-11

基金资助

国家自然科学基金委员会创新研究群体科学基金(11321062);国家自然科学基金(11372235,11102146,11272246);中央高校基本科研业务费专项资金

Experimental investigation on against penetration of metallic honeycomb sandwich plates under low-velocity impact

  • CHEN Shangjun ,
  • QIN Qinghua ,
  • ZHANG Wei ,
  • XIA Yuanming ,
  • YU Xuehui ,
  • ZHANG Jianxun ,
  • WANG Binwen ,
  • WANG Tiejun
Expand
  • 1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China;
    2. Aircraft Strength Research Institute, AVIC, Xi'an 710065, China

Received date: 2017-06-05

  Revised date: 2017-11-03

  Online published: 2018-02-11

Supported by

Science Fund for Creative Research Groups of the National Nature Science Foundation of China (11321062); National Natural Science Foundation of China (11372235,11102146,11272246); The Fundamental Research Funds for the Central Universities

摘要

利用落锤冲击试验系统,研究了金属蜂窝夹芯板在低速冲击载荷作用下的抗侵彻行为。试验获得了平头、半球形和锥形锤头冲击下蜂窝夹芯板的破坏模式和力-位移曲线,分析了锤头形状和芯材厚度对夹芯板最终破坏模式、力-位移曲线和临界破坏能量的影响。试验结果表明:夹芯板在平头、半球形和锥形锤头冲击下上面板分别产生了圆形剪切、圆形拉伸和钻石形的最终失效模式,下面板的最终失效模式分别为圆形剪切、瓣形开裂和瓣形开裂;金属蜂窝夹芯薄板在锥形锤头和半球形锤头冲击下的力-位移曲线会出现单峰模式,金属蜂窝夹芯厚板在锥形锤头和半球形锤头冲击下的力-位移曲线则是双峰模式,而在平头锤头冲击下的金属蜂窝夹芯板的力-位移曲线均为双峰模式;金属蜂窝夹芯薄板抵抗半球形锤头侵彻的能力最好,抵抗平头锤头侵彻的能力最差,而金属蜂窝夹芯厚板抵抗锥形锤头侵彻的能力最好,抵抗平头锤头和半球形锤头侵彻的能力较差。

本文引用格式

陈尚军 , 秦庆华 , 张威 , 夏元明 , 于学会 , 张建勋 , 王彬文 , 王铁军 . 低速冲击下金属蜂窝夹芯板抗侵彻性能的试验研究[J]. 航空学报, 2018 , 39(2) : 221483 -221483 . DOI: 10.7527/S1000-6893.2017.21483

Abstract

The against penetration behavior of metallic honeycomb sandwich plates under low-velocity impact was experimentally studied with the drop-hammer impact systems. Damage modes and impact force-displacement responses of sandwich plates with different core thickness under the impact of blunt, spherical and cone projectiles were demonstrated. The effects of core thickness and projectile's shapes on the final fracture modes, impact force-displacement responses and critical fracture energy of sandwich plates were analyzed. Experimental results show that round-shear fracture mode, round-tensile fracture mode and diamondoid fracture mode were found on the top face-sheets of sandwich plates when the shapes of the projectiles are blunt, spherical and conical, respectively. Round-shear fracture mode, petaloid fracture mode and petaloid fracture mode were found on the bottom face-sheets of sandwich plates when the shapes of the projectiles are blunt, spherical and conical, respectively. Single peak modes were found in the impact force-displacement responses during loading of the spherical and conical projectiles on thin sandwich plates, while double peaks modes occurred when the sandwich plates were thick. For both thin and thick sandwich plates under the impact of the blunt projectile, the impact force-displacement responses accorded with double peaks modes. The ability against penetration of the thin sandwich plate appeared to be the best under the impact of spherical projectiles, while the worst under the impact of blunt projectiles. The ability against penetration of thick sandwich plates appeared to be the best under the impact of conical projectiles, while poorer under the impact of blunt and spherical projectiles.

参考文献

[1] Evans A G. Light-weight materials and structures[J]. Materials Research Bulletin, 2001, 26:790-797.[2] 方岱宁, 张一慧, 崔晓东. 轻质点阵材料力学与多功能设计[M]. 北京:科学出版社, 2009:79-121. FANG D N, ZHANG Y H, CUI X D. Mechanical properties and optimal design of lattice structures[M]. Beijing:Science Press, 2009:79-121(in Chinese).[3] 梁伟, 张立春, 吴大方, 等. 金属蜂窝夹芯板瞬态热性能的计算与试验分析[J]. 航空学报, 2009, 30(4):672-677. LIANG W, ZHANG L C, WU D F, et al. Computation and analysis of transient thermal performance of metal honeycomb sandwich panels[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):672-677(in Chinese).[4] 吴林志, 泮世东. 夹芯结构的设计及制备现状[J]. 中国材料发展, 2009, 28(4):40-45. WU L Z, PAN S D. Survey of design and manufacturing of sandwich structures[J]. Materials China, 2009, 28(4):40-45(in Chinese).[5] 杨益, 李晓军, 郭彦朋. 夹芯材料发展及防护结构应用综述[J]. 兵器材料科学与工程, 2010, 33(4):91-96. YANG Y, LI X J, GUO Y P. Development of sandwich materials and their application overview in protective structure[J]. Ordnance Material Science and Engineering, 2010, 33(4):91-96(in Chinese).[6] 程文礼, 袁超, 邱启艳, 等. 航空用蜂窝夹层结构及制造工艺[J]. 航空制造技术, 2015, 476(7):94-98. CHENG W L, YUAN C, QIU Q Y, et al. Honeycomb sandwich structure and manufacturing process in aviation industry[J]. Aeronautical Manufacturing Technology, 2015, 476(7):94-98(in Chinese).[7] HOU W H, ZHU F, LU G X, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J]. International Journal of Impact Engineering, 2010, 37(10):1045-1055.[8] YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact-An experimental study[J]. International Journal of Impact Engineering, 2015, 75:100-109.[9] FATT M S H, PARK K S. Perforation of honeycomb sandwich plates by projectiles[J]. Composites:Part A, 2000, 31:889-899.[10] CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J]. International Journal of Impact Engineering, 2012, 43:6-15.[11] 李志斌, 卢芳云. 泡沫铝夹芯板压入和侵彻性能的实验研究[J]. 振动与冲击, 2015, 34(4):1-5. LI Z B, LU F Y. Tests for indentation and perforation of sandwich panels with aluminium foam core[J]. Journal of Vibration and Shock, 2015, 34(4):1-5(in Chinese).[12] MINDESS S, YAN C. Perforation of plain and fibre reinforced concretes subjected to low-velocity impact loading[J]. Cement and Concrete Research, 1993, 23:83-92.
文章导航

/