固体力学与飞行器总体设计

基于FQFD的太阳能无人机设计指标排序方法

  • 周伟 ,
  • 李赛 ,
  • 王学仁 ,
  • 谢飞
展开
  • 1. 火箭军工程大学 动力工程系, 西安 710025;
    2. 西北工业大学 航天学院 航天飞行动力学技术重点实验室, 西安 710072

收稿日期: 2017-04-05

  修回日期: 2017-12-25

  网络出版日期: 2018-02-11

基金资助

省部级项目

Sorting method for design specifications of solar powered UAV based on FQFD

  • ZHOU Wei ,
  • LI Sai ,
  • WANG Xueren ,
  • XIE Fei
Expand
  • 1. Power Engineering Department, Rocket Force University of Engineering, Xi'an 710025, China;
    2. Science and Technology on Aerospace Flight Dynamics Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-04-05

  Revised date: 2017-12-25

  Online published: 2018-02-11

Supported by

Provincial/Ministerial Level Project

摘要

为解决太阳能无人机(UAV)总体设计中任务需求表达模糊、技术指标重要度排序决策困难的问题,提出了基于模糊质量功能展开(FQFD)的太阳能无人机总体设计指标排序方法。该方法在传统质量功能展开(QFD)质量屋的基础上,引入三角模糊数,表征任务需求的不确定性和模糊性;在模糊隶属度函数未知的情况下,采用α加权修正水平截集去模糊化方法计算技术指标重要度,获得技术指标重要度排序,为总体设计优化决策提供依据。最后以长航时太阳能无人机的总体设计为例,对任务需求—工程特性—技术指标的两级质量屋模型进行计算分析,得到续航能力、巡航高度、动力系统效率、巡航速度和气动效率是太阳能无人机最重要的5个技术指标的结果。此方法客观性较强,可处理复杂的系统不确定性,为太阳能无人机总体方案设计及决策应用提供参考依据。

本文引用格式

周伟 , 李赛 , 王学仁 , 谢飞 . 基于FQFD的太阳能无人机设计指标排序方法[J]. 航空学报, 2018 , 39(2) : 221299 -221299 . DOI: 10.7527/S1000-6893.2017.21299

Abstract

To solve the problem existing in the preliminary design of the solar powered Unmanned Aerial Vehicle (UAV), such as uncertainty of task demands and difficulty in importance-sorting of technical specifications, a sorting method is proposed for designing specifications of the solar powered UAV based on Fuzzy Quality Function Deployment (FQFD). On the basis of the traditional Quality Function Deployment (QFD) house of quality, the method introduces the triangular fuzzy number to characterize the uncertainty and fuzziness of the task demand. On the condition that the fuzzy number membership function for the importance of technical characteristics is not explicitly known, the importance level of technical specifications is defuzzified by averaging level α-cut set. Importance-sorting of technical specifications is realized to provide reference for the preliminary design decision. For the preliminary design of the long-haul solar powered UAV, the two-level house of quality model for the task demand-engineering characteristics-technical specifications is analyzed. The result indicates that the five most important technical specifications are flight endurance, cruise height, powered system efficiency, cruise speed and aerodynamic efficiency. Compared with traditional methods, the method proposed can handle more complex system uncertainty with better objectivity, providing reference for the preliminary design and decision making of the solar powered UAV.

参考文献

[1] 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014, 35(2):408-416. MA D L, BAO W Z, QIAO Y H. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):408-416(in Chinese).[2] 昌敏, 周洲, 郑志成. 太阳能飞机原理及总体参数敏度分析[J]. 西北工业大学学报, 2010, 28(5):792-796. CHANG M, ZHOU Z, ZHENG Z C. Flight principles of solar-powered airplane and sensitivity analysis of its conceptual parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5):792-796(in Chinese).[3] SUN J, KALENCHUK D K, XUE D, et al. Design candidate identification using neural network-based fuzzy reasoning[J]. Robotics and Computer Integrated Manufacturing, 2000, 16(5):383-396.[4] BEHZADIAN M, HOSSEINI-MOTLAGH S M, IGNATIUS J, et al. PROMETHEE group decision support system and the house of quality[J]. Group Decision and Negotiation, 2013, 22(2):189-205.[5] TAN R. Quality functional deployment as a conceptual aircraft design tool[D]. Singapore:Singapore Institute of Technology, 2000:13-62.[6] 解建喜, 宋笔锋, 刘东霞. 飞机顶层设计中的模糊质量功能配置方法[J]. 机械工程学报, 2004, 40(9):165-170. XIE J X, SONG B F, LIU D X. Method of fuzzy quality function deployment in aircraft top-level design[J]. Journal of Mechanical, 2004, 40(9):165-170(in Chinese).[7] 陈毅雨, 刘硕, 钟斌, 等. 基于GQFD的警用反恐无人机战绩性能需求分析[J]. 火力与指挥控制, 2016, 41(9):142-146. CHEN Y Y, LIU S, ZHONG B, et al. Requirement analysis of police anti-terrorism unmanned aerial vehicle's tactical performance based on GQFD[J]. Fire Control & Command Control, 2016, 41(9):142-146(in Chinese).[8] 赵雷. 航空发动机低温壳体设计需求分析与指标确定策略[J]. 航空发动机, 2017, 43(5):91-96. ZHAO L. Design requirements analysis and indicators determination strategy of aeroengine cryogenic shell[J]. Aeroengine, 2017, 43(5):91-96(in Chinese).[9] 张付英, 姜向敏, 王宏浩. 基于模糊理论的QFD用户需求分析方法研究[J]. 天津科技大学学报, 2017, 32(1):56-61. ZHANG F Y, JIANG X M, WANG H H. Analysis method of customer requirements for QFD based on fuzzy theory[J]. Journal of Tianjin University of Science & Technology, 2017, 32(1):56-61(in Chinese).[10] WANG J. Fuzzy outranking approach to prioritize design requirements in quality function deployment[J]. International Journal of Production Research, 1999, 37(4):899-916.[11] AKAO Y. New product deployment and quality assurance-quality deployment system[J]. Standardization and Quality Control, 1972, 25(4):7-14.[12] 邵家骏. 质量功能展开[J]. 航空标准化与质量, 1994(5):9-15. SHAO J J. Quality function deployment[J]. Aeronautic Standardization & Quality, 1994(5):9-15(in Chinese).[13] 熊伟, 权婧雅. QFD及其发展动向[J]. 中国质量, 2008(10):16-17. XIONG W, QUAN J Y. Development trends of QFD[J]. China Quality, 2008(10):16-17(in Chinese).[14] SILVERMAN M. HASS development methods:Screen development, change schedule, and re-prove schedule[C]//Proceeding Annual Reliability and Maintainability Symposium, 2000, 43:245-247.[15] ZADEH L A. Fuzzy sets[J]. Information & Control, 1965, 8(3):338-353.[16] 刘雪杰. 两种模糊数的排序方法及其应用研究[D].成都:西南交通大学, 2014:8-18. LIU X J. Two ranking methods about fuzzy number and its application[D]. Chengdu:Southwest Jiaotong University, 2014:8-18(in Chinese).[17] KAUFMANN A, Gupta M M. Fuzzy mathematical models in engineering and management science[M]//Sole Distributors for the U.S.A. and Canada. Amsterdam:Elsevier Science Pub. Co., 1988:37-103.[18] 姜艳萍, 樊志平. 三角模糊数互补判断矩阵排序的一种使用方法[J]. 系统工程, 2002, 20(2):89-92. JIANG Y P, FAN Z P. A practical ranking method for reciprocal judgment matrix with triangular fuzzy numbers[J]. Systems Engineering, 2002, 20(2):89-92(in Chinese).[19] 李磊, 汪永超, 唐雨, 等. 基于模糊层次分析法的机械材料选择[J]. 组合机床与自动化加工技术, 2015(11):8-12. LI L, WANG Y C, TANG Y, et al. Mechanical material selection based on FAHP[J]. Modular Machine Tool & Automatic Manufalturing Technique, 2015(11):8-12(in Chinese).[20] 何桢, 赵有, 马彦辉. 模糊QFD中技术重要度排序方法[J]. 天津大学学报, 2008, 41(5):631-634. HE Z, ZHAO Y, MA Y H. Method for rating technical characteristics in fuzzy QFD[J]. Journal of Tianjin University, 2008, 41(5):631-634(in Chinese).[21] 钱存华, 张琳, 戴槟, 等. 三角模糊数的加权平均及其在评价决策中的应用[J]. 运筹与管理, 2005, 14(2):5-9. QIAN C H, ZHANG L, DAI B, et al. Fuzzy weighted average with triangular fuzzy numbers and its application to the assessment and decision[J]. Operations Research and Management Science, 2005, 14(2):5-9(in Chinese).[22] 车阿大, 林志航, 方勇. 模糊集理论在QFD中的应用[J]. 系统工程理论方法应用, 1998, 7(2):55-57. CHE A D, LIN Z H, FANG Y. Study on using fuzzy sets in QFD[J]. Systems Engineering-Theory Methodology Applications, 1998, 7(2):55-57(in Chinese).[23] TRAN L, DUCKSTEIN L. Comparison of fuzzy numbers using a fuzzy distance measure[J]. Fuzzy Set and Systems, 2002, 130(3):331-341.[24] 李赛, 周伟, 谢飞. 小型长航时太阳能无人机总体设计优化方法[J]. 空军工程大学学报(自然科学版), 2018, 19(1):7-15. LI S, ZHOU W, XIE F. Overall design and optimization method of small long-endurance solar powered UAV[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(1):7-15(in Chinese).
文章导航

/