固体力学与飞行器总体设计

基于一阶PPF的垂尾振动分数阶控制

  • 牛文超 ,
  • 李斌 ,
  • 高振宇 ,
  • 王巍
展开
  • 西北工业大学 航空学院, 西安 710072

收稿日期: 2017-11-21

  修回日期: 2018-02-01

  网络出版日期: 2018-02-01

基金资助

国家自然科学基金(11172238,11502208);陕西省自然科学基础研究计划(2018JM5179)

Fractional order control of vertical tail vibration based on first-order PPF

  • NIU Wenchao ,
  • LI Bin ,
  • GAO Zhenyu ,
  • WANG Wei
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-11-21

  Revised date: 2018-02-01

  Online published: 2018-02-01

Supported by

National Natural Science Foundation of China (11172238,11502208);Natural Science Basic Research Plan in Shannxi Province of China (2018JM5179)

摘要

针对传统正位置反馈(PPF)与一阶PPF控制器控制效果与鲁棒性不足,难以适用于结构动力学特性存在摄动的问题,提出一种新的基于分数阶微积分理论和一阶PPF的分数阶(FOPPF1)控制器,增加了一阶PPF控制器的可设计空间。综合考虑随机响应的频域特性与整体波动强弱,构造了控制器优化设计的目标函数。以粘有宏纤维压电复合材料(MFC)压电片的垂尾模型为被控对象,设计了相应的FOPPF1控制器。该控制器在控制目标频段内的相频特性变化平缓,可有效实现控制相位补偿,且闭环极点对参数摄动不敏感,使得控制器的鲁棒性强。通过试验研究了FOPPF1控制器对于自由振动与窄带随机振动的抑制性能。相比一阶PPF控制器,对标称垂尾模型,FOPPF1控制器在自由振动抑制试验中的等效阻尼系数提高了约50%。当给垂尾模型的一阶弯曲固有频率引入一定量的离线摄动或在线摄动后,窄带随机振动控制试验的结果表明,FOPPF1控制器的鲁棒性、控制效果及控制能耗率明显优于经典的一阶PPF控制器,因此对垂尾结构的振动主动控制具有良好应用潜力。

本文引用格式

牛文超 , 李斌 , 高振宇 , 王巍 . 基于一阶PPF的垂尾振动分数阶控制[J]. 航空学报, 2018 , 39(8) : 221884 -221884 . DOI: 10.7527/S1000-6893.2018.21884

Abstract

Traditional Positive Position Feedback (PPF) and first-order PPF controllers are inadequate in control effectiveness and robustness, and is thus difficult to be applied to the structures with perturbation effect. A novel Fractional Order (FOPPF1) controller is proposed based on the fractional calculus theory and the first-order PPF to increase the designable space of the controller. Considering the frequency domain characteristic and global vibration amplitude of random response, an optimization design of the objective function for the FOPPF1 controller is constructed. A scale model of the vertical tail with Macro Fiber Composite (MFC) piezoelectric patches is manufactured, and the corresponding FOPPF1 controller is designed based on the proposed method. The phase frequency property of this controller in the target frequency band is changed gently, and the phase compensation can be effectively realized. Furthermore, the poles in the closed-loop system are insensitive to parameter perturbation; therefore, the proposed FOPPF1 controller has good robustness. The free vibration and narrow-band random vibration control experiments are performed to validate the proposed control method. The free vibration response test results show that the equivalent damping coefficient of the FOPPF1 controller for the nominal model is improved by about 50% of that of the first-order PPF controller. When a certain amount of offline or online perturbation is introduced into the first-order natural frequency of the vertical tail, results of the narrow-band random vibration control experiment show that the robustness, control efficiency and energy consumption ratio of the proposed FOPPF1 controller is significantly better than those of the classical first-order PPF. Therefore, the proposed controller has great potential for application in vibration control of the vertical tail.

参考文献

[1] HOPKINS M A, HENDERSON D A, MOSES R W, et al. Active vibration suppression systems applied to twin tail buffeting[J]. Proceedings of SPIE Smart Structures and Materials:Industrial and Commercial Application of Smart Structures Technologies, 1998, 3326:27-33.
[2] NITZSCHE F, ZIMCIK D G, RYALL T G, et al. Closed-loop control tests for vertical fin buffeting alleviation using strain actuation[J]. Journal of Guidance Control and Dynamics, 2001, 24(4):855-856.
[3] SHETA E F, MOSES R W, HUTTSELL L J, et al. Active control of F/A-18 vertical tail buffeting using piezoelectric actuators[J]. AIAA Journal, 2003, 4(6):1-11.
[4] SHETA E F, MOSES R W, HUTTSELL L J. Active smart material control system for buffet alleviation[J]. Journal of Sound and Vibration, 2006, 292(3):854-868.
[5] BROWNING J S, COBB R G, CANFIELD R A, et al. F-16 ventral fin buffet alleviation using piezoelectric actuators[C]//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2009:2538.
[6] CHEN Y, ULKER F D, NALBANTOGLU V, et al. Active control of smart fin model for aircraft buffeting load alleviation applications[J]. Journal of Aircraft, 2009, 46(6):1965.
[7] CHEN Y, ULKER F D, WICKRAMASINGHE V, et al. Development of robust control law for active buffeting load alleviation of smart fin structures[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(7):818-831.
[8] 陈仁文, 刘强, 徐志伟, 等. 基于压电智能结构的垂尾减振系统[J]. 力学学报, 2009, 41(4):603-608. CHEN R W, LIU Q, XU Z W, et al. The vibration suppression system for vertical tail based on smart piezoelectric structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4):603-608(in Chinese).
[9] 王巍, 杨智春, 张新平. 扰流激励下垂尾抖振响应主模态控制风洞试验研究[J]. 振动与冲击, 2012, 31(16):18-21. WANG W, YANG Z C, ZHANG X P. Fin buffeting alleviation in disturbed flow by buffeting principal modal control method[J]. Journal of Vibration and Shock, 2012, 31(16):18-21(in Chinese).
[10] GAO L, LU Q, FEI F, et al. Active vibration control based on piezoelectric smart composite[J]. Smart Materials and Structures, 2013, 22(12):125032.
[11] 梁力, 杨智春, 欧阳炎, 等. 垂尾抖振主动控制的压电作动器布局优化[J]. 航空学报, 2016, 37(10):3035-3043. LIANG L, YANG Z C, OUYANG Y, et al. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3035-3043(in Chinese).
[12] GOH C J, CAUGHEY T K. On the stability problem caused by finite actuator dynamics in the collocated control of large space structures[J]. International Journal of Control, 1985, 41(3):787-802.
[13] FANSON J L, CAUGHEY T K. Positive position feedback control for large space structures[J]. AIAA Journal, 1990, 28(4):717-724.
[14] MAHMOODI S N, AHMADIAN M. Modified acceleration feedback for active vibration control of aerospace structures[J]. Smart Materials and Structures, 2010, 19(6):065015.
[15] REW K H, HAN J H, LEE I. Multi-modal vibration control using adaptive positive position feedback[J]. Journal of Intelligent Material Systems and Structures, 2002, 13(1):13-22.
[16] BAZ A, POH S, FEDOR J. Independent modal space control with positive position feedback[J]. Journal of Dynamic Systems, Measurement, and Control, 1992, 114(1):96-103.
[17] BAZ A, POH S. Optimal vibration control with modal positive position feedback[J]. Optimal Control Applications and Methods, 1996, 17(2):141-149.
[18] BAZ A, HONG J T A I. Adaptive control of flexible structures using modal positive position feedback[J]. International Journal of Adaptive Control and Signal Processing, 1997, 11(3):231-253.
[19] XUE D, CHEN Y Q. A comparative introduction of four fractional order controllers[C]//Proceedings of the 4th World Congress on Intelligent Control and Automation. Piscataway, NJ:IEEE Press, 2002:3228-3235.
[20] POH S, BAZ A. Active control of a flexible structure using a modal positive position feedback controller[J]. Journal of Intelligent Material Systems and Structures, 1990, 1(3):273-288.
[21] 邓立为, 宋申民. 基于分数阶滑模的挠性航天器姿鲁棒跟踪控制[J]. 航空学报, 2013, 34(8):1915-1923. DENG L W, SONG S M. Flexible spacecraft attitude robust tracking control based on fractional order sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1915-1923(in Chinese).
文章导航

/