高超声速飞行器天线窗材料在等离子体包覆条件下的热响应和热透波特性测试,是分析天线窗材料特性、研究电磁波在等离子体和天线窗中传输特性的基础。针对等离子体和天线窗中电磁波传输特性,采用矢量网络分析仪和标准增益天线组成的电磁波传输测试系统,获得了一定频率的电磁波经过等离子体和高温天线窗之后的衰减;针对高温天线窗自身热响应特性和电磁波在其中的传输特性,研究了天线窗材料在一定热流作用下的温度分布和烧蚀特性,测试了烧蚀后处于高温状态且无等离子体覆盖的天线窗对电磁波的影响,分析了天线窗高温透波特性与常温透波特性的差异。所建立的方法,为在地面等离子体风洞中开展天线窗热透波特性研究、分析天线窗和等离子体耦合作用对电磁波传输特性的影响建立了基础。
Tests of the thermal response and hot-wall microwave-transparency characteristics of plasma covered antenna window materials for hypersonic vehicles are the basis for analyzing material characteristics and studying transmission characteristics of electromagnetic waves in plasma and antenna windows. Attenuation of the electromagnetic wave with certain frequency in plasma and antenna window is obtained with vector network analysis and standard gain horns. To obtain the thermal response and hot-wall microwave-transparency characteristics of the antenna window, the temperature distribution and ablation characteristics of the antenna window under certain heat flux are obtained, the effect of the antenna window at high temperature and without plasma on the electromagnetic wave is tested, and the differences between high temperature and normal temperature antenna windows are analyzed. The test methods proposed provides a basis for research on hot-wall microwave-transparency characteristics of antenna windows and coupling effect of antenna window and plasma on transmission characteristics of the electromagnetic wave in the plasma wind tunnel.
[1] 黎义, 张大海, 陈英, 等. 航天透波多功能材料研究进展[J]. 宇航材料工艺, 2000(5):1-5. LI Y, ZHANG D H, CHEN Y, et al. Progress in high performance radome & antenna materials for aerospace[J]. Aerospace Materials & Technology, 2000(5):1-5(in Chinese).
[2] 姜勇刚, 张长瑞, 曹峰, 等. 高超音速导弹天线罩透波材料研究进展[J]. 硅酸盐通报, 2007, 26(3):500-505. JIANG Y G, ZHANG C R, CAO F, et al. Development of microwave transparent materials for hypersonic missile radomes[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(3):500-505(in Chinese).
[3] 李仲平. 热透波机理及热透波材料进展与展望[J]. 中国材料进展, 2013, 32(4):193-202. LI Z P. Major advancement and development trends in study of hot-wall microwave-transparency mechanisms and high-temperature microwave-transparent materials[J]. Materials China, 2013, 32(4):193-202(in Chinese).
[4] RYBAK J P, CHURCHILL R J. Progress in reentry communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(5):879-894.
[5] MANNING R M. Analysis of electromagnetic wave propagation in a magnetized reentry plasma sheath via the kinetic equation:NASA TM-2009-216096[R].Washington, D.C.:NASA, 2009.
[6] DAVID M, JEFFREY P, JAMEY S, et al. Radio frequency (RF) blackout during hypersonic reentry:AIAA-2005-3443[R]. Reston, VA:AIAA, 2000.
[7] TILLIAN D J, CUBLEY H D. Thermal performance and radio-frequency transmissivity candidate ablation materials for S-band antenna window application on manned spacecraft:NASA-TM-X-68325[R]. Washington, D.C.:NASA, 1970.
[8] GOLDEN K, HANAWALT B, OSSMANN W. The prediction and measurement of dielectric properties and RF transmission through ablating boron nitride antenna windows:AIAA-1981-1085[R]. Reston, VA:AIAA, 1981.
[9] ARNOLD J H. Plasma arc test technique for evaluating antenna window RF transmission performance:AIAA-1982-0900[R]. Reston, VA:AIAA,1982.
[10] 张松贺, 杨远剑, 王茂刚, 等. 电弧风洞热/透波联合试验技术研究及应用[J]. 空气动力学学报, 2017, 35(1):141-145. ZHANG S H, YANG Y J, WANG M G, et al. Studies and applications of thermal/wave transmission test technique in arc-heated wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(1):141-145(in Chinese).
[11] TAKESHI I, KIYOMICHI I, MASAHITO M, et al. 110 kW new high enthalpy wind tunnel heated by inductively-coupled-plasma:AIAA-2003-7023[R]. Reston, VA:AIAA, 2003.
[12] HERDRICH G, AUWETER-KURTZ M, ENDLICH P, et al. Simulation of atmospheric entry manoeuvres using the inductively heated plasma wind tunnel PWK3:AIAA-2003-3637[R]. Reston, VA:AIAA, 2003.
[13] MACDONALD M E, JACOBS C M, LAUX C O, et al. Measurements of air plasma/ablator interactions in an inductively coupled plasma torch[J]. Journal Thermophysics Heat Transfer, 2014, 29(1):12-23.
[14] OWENS W, UHL J, DOUGHERTY M, et al. Development of a 30kW inductively coupled plasma torch for aerospace material testing:AIAA-2010-4322[R]. Reston, VA:AIAA, 2010.
[15] MARYNOWSKI T, LOHLE S, ZANDER F, et al. Aerothermodynamic investigation of inductively heated CO2 plasma flows for mars entry testing:AIAA-2014-2537[R]. Reston, VA:AIAA, 2014.
[16] BAUMGART J, MAGIN T, RINI P, et al. Simulation of entry in the true martian atmosphere[C]//Proceedings of the 5th European Symposium on Aerothermodynamics for Space Vehicles. Paris:European Space Agency, 2005:593-598.
[17] 刘初平. 气动热与热防护试验热流测量[M]. 北京:国防工业出版社, 2013:251-282. LIU C P. Aerodynamic heat and thermal protection test heat-flow measurement[M]. Beijing:National Defend Industry Press, 2013:251-282(in Chinese).
[18] 潘德贤, 蒋刚, 王国林, 等. 静电探针在高频等离子体风洞中的应用[J]. 实验流体力学, 2014, 28(3):72-77. PAN D X, JIANG G, WANG G L, et al. Application of Langmuir probe in high frequency plasma wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):72-77(in Chinese).
[19] CHEN F F. Langmuir probe analysis for high density plasmas[J]. Physics of Plasmas, 2001, 8(6):3029-3041.
[20] JESSE A L, ALEC D G. Internal langmuir probe mapping of a hall thruster with Xenon and Krypton propellant:AIAA-2006-4470[R]. Reston, VA:AIAA, 2006.
[21] HUTCHINSON I H. Principles of plasma diagnostics[M]. 2nd ed. Cambridge:Cambridge University Press, 2002:65-67.
[22] 马平, 曾学军, 石安华, 等. 电磁波在等离子体高温气体中传输特性实验研究[J]. 实验流体力学, 2010, 24(5):51-56. MA P, ZENG X J, SHI A H, et al. Experimental investigation on electromagnetic wave transmission characteristic in the plasma high temperature gas[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5):51-56(in Chinese).