固体力学与飞行器总体设计

正态型有寿件的备件方案确定方法

  • 邵松世 ,
  • 张志华 ,
  • 李华 ,
  • 刘任洋
展开
  • 1. 海军工程大学 科研部, 武汉 430033;
    2. 海军工程大学 兵器工程系, 武汉 430033;
    3. 海军装备研究院, 北京 100161

收稿日期: 2017-01-17

  修回日期: 2017-04-19

  网络出版日期: 2018-01-26

基金资助

国防预研项目(51304010206,51327020105)

Determination method for support plan for life-limited spares with normal distribution

  • SHAO Songshi ,
  • ZHANG Zhihua ,
  • LI Hua ,
  • LIU Renyang
Expand
  • 1. Office of Research & Development, Naval University of Engineering, Wuhan 430033, China;
    2. Department of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China;
    3. Naval Academy of Armament, Beijing 100161, China

Received date: 2017-01-17

  Revised date: 2017-04-19

  Online published: 2018-01-26

Supported by

National Defense Pre-research Foundation of China (51304010206, 51327020105)

摘要

针对有寿件工作寿命分布不确定、备件数量难预测的问题,提出了一种基于正态等效的有寿件备件方案确定方法。首先通过贝叶斯理论将有寿件的工作寿命分布等效为正态分布,进而计算其备件需求量;然后提出到寿更换概率用以度量部件在更换周期内的安全收益;最后通过综合权衡安全收益和经济成本确定有寿件的最佳更换周期,得到备件保障方案。在算例中,通过与仿真结果的对比表明:本文方法合理可行,精度较高。

本文引用格式

邵松世 , 张志华 , 李华 , 刘任洋 . 正态型有寿件的备件方案确定方法[J]. 航空学报, 2018 , 39(1) : 221147 -221147 . DOI: 10.7527/S1000-6893.2017.221147

Abstract

To address the problem of uncertainty of work life distribution and difficulty in predicting demands for life-limited spares, a determination method for support plan for life-limited spares is proposed based on normal-equivalence. The work life of life-limited spares is obtained to be equivalent to normal distribution based on Bayesian theory, and the number of the spares demand is then calculated. The life replacement probability is put forward to measure the safety benefits during the replacement cycle. The optimal replacement cycle is obtained by tradeoff between safety benefits and economic costs. A comparison of simulation and calculation results shows that our method is reasonable and feasible and owns high precision.

参考文献

[1] 中国人民解放军总装备部. 备件供应规划要求:GJB4355-2002[S]. 北京:国防工业出版社,2003:21-22. The PLA General Armament Department. Spares provisioning requirements:GJB4355-2002[S]. Beijing:National Defense Industry Press,2003:21-22(in Chinese).[2] 金正, 张志华, 应新雅. 舰船装备限寿备件满足率评估模型[J]. 指挥控制与仿真,2015,37(4):130-133. JIN Z, ZHANG Z H, YING X Y. Evaluation and model of ship life limited items sufficiency[J]. Command Control & Simulation, 2015,37(4):130-133(in Chinese).[3] RUEY H Y, CHEN M Y, LI C Y. Optimal periodic replacement policy for repairable products under free-repair warranty[J]. European Journal of Operational Research, 2007, 176(3):1678-1686.[4] LI Y, MA X B, ZHAI Q Q, et al. A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement[J]. Reliability Engineering and System Safety, 2016, 150:96-104.[5] GOLMAKANI H, MOAKEDI H. Periodic inspection optimization model for a two-component repairable system with failure interaction[J]. Quality and Reliability Engineering International, 2012, 63(3):540-549.[6] NAKAGAWA T, MIZUTANI S. A summary of maintenance policies for a finite interval[J]. Reliability Engineering and System Safety, 2009, 94:89-96.[7] SCARF P, CAVALCANTE C. Modeling quality in replacement and inspection maintenance[J]. International Journal of Production Economics, 2012,135(1):372-381.[8] TAGHIPOUR S, BANJEVIC D, JARDINE A. Periodic inspection optimization model for a complex repairable system[J]. Reliability Engineering and System Safety, 2010, 95:944-952.[9] 韦来生, 张伟平. 贝叶斯分析[M]. 合肥:中国科学技术大学出版社, 2013:99-103. WEI L S, ZHANG W P. Bayesian analysis[M]. Hefei:University of Science & Technology China Press, 2013:99-103(in Chinese).[10] 李华, 邵松世, 阮旻智,等.备件保障的工程实践[M].北京:科学出版社, 2016:5-11. LI H, SHAO S S, RUAN M Z, et al. The engineering practice of spare parts support[M]. Beijing:Science Press, 2016:5-11(in Chinese).
文章导航

/