Determination of bolt load distribution ratio of multi-bolted joints is essential for structural strength analysis, and is also the precondition for investigation of stress distribution in critical bolts and neighboring regions of plates. In this paper, the multi-bolted aluminum stepped lap joints from a certain type of aircraft are studied in terms of the bolt load distribution ratio, which is preliminarily estimated by means of the strain gauge electric testing technique. Then, a three-dimensional finite element model, taking into account of the load transferred by the bolt-head, contact friction, bolt clamp-up,material nonlinearity and anti-bending fixture, is constructed with ABAQUS software to simulate the load distribution between bolts for the joints. The calculation results reveal that edge rows carry more amount of load than the inner ones, and the step height is an important influence factor for bolt load distribution ratio of stepped lap joints. The effect of step height on uniformity of bolt load distribution is further analyzed. The analysis shows that during the elastic range, with the increase of step height, the bolt load distribution becomes more even; during the plastic range, with the increase of step height, the bolt load distribution grows even initially and then deteriorates. The configuration of stepped lap joints is optimized based on bolt load distribution and the maximum stress around the bolt-holes. It is shown that for the optimized stepped lap joints, the extreme difference of bolt load distribution ratio is less than 1.1%, and the maximum stress around the serious bolt-holes and the maximum shear stress of bolts decreases by 4.4% and 10.2% of those of the original ones, respectively.
[1] 飞机结构强度研究所. 航空结构连接件疲劳分析手册[M]. 西安:飞机结构强度研究所, 1985:89-116. Aircraft Structure Strength Research Institute. Analysis handbook for aeronautical structural joint[M]. Xi'an:Aircraft Structure Strength Research Institute, 1985:83-116(in Chinese).
[2] 谢鸣九. 复合材料多排螺接接头载荷分配的电测法[C]//李顺林. 第八届全国复合材料会议论文集. 北京:航空工业出版社, 1994:641-645. XIE M J. Multi-row bolted composite joint load distribution electrical measuring method[C]//LI S L. Proceedings of the 8th National conference on Composite Materials. Beijing:Aeronautical Industry Press, 1994:641-645(in Chinese).
[3] SKORUPA M, MACHNIEWICZ T, KORBEL A, et al. Rivet flexibility and load transmission for a riveted lap joint[J]. Archive of Mechanical Engineering, 2010, 57(3):235-245.
[4] 刘兴科, 李亚智, 刘向东, 等. 金属和复合材料多钉连接钉载分配研究[J]. 航空工程进展, 2011, 2(2):193-196. LIU X K, LI Y Z, LIU X D, et al. Study on load distribution of multiple-bolted metal to composite joints[J]. Advances in Aeronautical Science and Engineering, 2011, 2(2):193-196(in Chinese).
[5] 刘向东, 李亚智, 舒怀, 等. 多钉连接钉载分配特性研究方法[J]. 复合材料学报, 2013, 30(1):210-217. LIU X D, LI Y Z, SHU H, et al. Experimental and numerical study on the pin-load distribution of multiple-bolted joints[J]. Acta Materiae Compositae Sinica, 2013, 30(1):210-217(in Chinese).
[6] KELLY G. Load transfer in hybrid (bonded/bolted) composite single-lap joints[J]. Composite Structures, 2005, 69(1):35-43.
[7] EKH J, SCHÖN J. Load transfer in multi-row, single shear, composite-to-aluminum lap joints[J]. Composites Science & Technology, 2006, 66(7):875-885.
[8] 张建宇, 刘丰睿, 山美娟, 等. 复合材料多钉连接钉载矢量传感器[J]. 复合材料学报, 2015, 32(5):1420-1427. ZHANG J Y, LIU F R, SHAN M J, et al. Instrumented bolt for load vector of composite multi-bolt joints[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1420-1427(in Chinese).
[9] 蒋持平, 张行. 多钉连接件钉传载荷计算的一个解析方法[J]. 航空学报, 1994, 15(3):310-317. JIANG C P, ZHANG X. An analytical method of pin load computations for joints with multi-fasteners[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(3):310-317(in Chinese).
[10] 杨旭, 章怡宁, 许希武. 复合材料层板多钉机械连接强度计算方法[J]. 航空学报, 1998, 19(1):11-20. YANG X, ZHANG Y N, XU X W. Strength analysis method of composite plate with multiple bolted joints[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1):11-20(in Chinese).
[11] ANDRIAMAMPIANINA J, ALKATAN F, STÉPHAN P, et al. Determining load distribution between the different rows of fasteners of a hybrid load transfer bolted joint assembly[J]. Aerospace Science & Technology, 2012, 23(1):312-320.
[12] LECOMTE J, BOIS C, WARGNIER H, et al. An analytical model for the prediction of load distribution in multi-bolt composite joints including hole-location errors[J]. Composite Structures, 2014, 117(1):354-361.
[13] 谢宗蕻, 李想, 杨淋雅, 等. 基于弹簧质量模型的复合材料螺接修理载荷传递计算方法[J]. 航空学报, 2016, 37(12):3742-3751. XIE Z H, LI X, YANG L Y, et al. A calculation method for load transfer in bolted repair of composite laminates based on spring-mass mode[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3742-3751(in Chinese).
[14] 侯赤, 万小朋, 黄河源, 等. 复合材料层合板多钉连接的紧固件连接柔度[J]. 航空学报, 2018, 39(3):221593. HOU C, WAN X P, HUANG H Y, et al. Fastener connection flexibility of the multi-bolted laminates joint[J]. Acta Aeronuatica et Astronautica Sinica, 2018, 39(3):221593(in Chinese).
[15] EKH J, SCHÖN J. Finite element modeling and optimization of load transfer in multi-fastener joints using structural elements[J]. Composite Structures, 2008, 82(2):245-256.
[16] PAVAN KUMAR D V T G, SATHIYA NAARAYAN S, KALYANA SUNDARAM S, et al. Further numerical and experimental failure studies on single and multi-row riveted lap joints[J]. Engineering Failure Analysis, 2012, 20:9-24.
[17] MCCARTHY C T, MCCARTHY M A. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints:Part Ⅱ-Effects of bolt-hole clearance[J]. Composite Structures, 2005, 71(2):159-175.
[18] KIM J, YOON J C, KANG B S. Finite element analysis and modeling of structure with bolted joints[J]. Applied Mathematical Modelling, 2007, 31(5):895-911.
[19] 朱红红, 李成, 何龙, 等. 复合材料两钉斜削搭接接头钉载分配与连接强度研究[J]. 机械工程学报, 2012, 48(20):57-62. ZHU H H, LI C, HE L, et al. Research on pin load distribution and joining strength for multi-bolt beveled-lap composite joints[J]. Journal of Mechanical Engineering, 2012, 48(20):57-62(in Chinese).
[20] 中国航空综合技术研究所. 光杆公差带f9六角头螺栓:HB 1-103-2002[S]. 北京:中国航空综合技术研究所, 2003. AVIC China Aero-polytechnology Establishment. Hexagon-head bolts, shank tolerance f9:HB 1-103-2002[S]. Beijing:AVIC China Aero-polytechnology Establishment, 2003.
[21] 马占永. 飞机设计手册第2册:标准和标准件[M]. 北京:航空工业出版社, 2000:270-272. MA Z Y. Aircraft design manual Book 2:Standards and standard parts[M]. Beijing:Aviation Industry Press, 2000:270-272(in Chinese).
[22] 邱宣怀. 机械设计[M]. 北京:高等教育出版社, 1997:102-103. QIU X H. Machine design[M]. Beijing:Higher Education Press, 1997:102-103(in Chinese).
[23] 袁喆, 刘军, 闫五柱, 等. 双剪切连接件钉传载荷分析及其均化处理[J]. 材料科学与工程学报, 2013, 31(1):88-91. YUAN Z, LIU J, YAN W Z, et al. Pin load distribution of double shear joint research and load distribution uniform treatment[J]. Journal of Materials Science & Engineering, 2013, 31(1):88-91(in Chinese).
[24] 石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京:机械工业出版社, 2006:304-316. SHI Y P, ZHOU Y R. ABAQUS analysis and examples[M]. Beijing:China Machine Press, 2006:304-316(in Chinese).
[25] 谢宗蕻, 李想, 郭家平, 等. 考虑间隙配合的复合材料钉载分配均匀化方法[J]. 复合材料学报, 2016, 33(4):806-813. XIE Z H, LI X, GUO J P, et al. Load distribution homogenization method of multi-bolt composite joints with consideration of bolt-hole clearance[J]. Acta Materiae Compositae Sinica, 2016, 33(4):806-813(in Chinese).