流体力学与飞行力学

飞机起落架噪声源定位的压缩感知算法

  • 宁方立 ,
  • 张超 ,
  • 潘峰 ,
  • 刘勇 ,
  • 韦娟
展开
  • 1. 西北工业大学 机电学院, 西安 710072;
    2. 西安电子科技大学 通信工程学院, 西安 710071

收稿日期: 2017-10-18

  修回日期: 2018-01-24

  网络出版日期: 2018-01-24

基金资助

国家自然科学基金(51675425,51375385);陕西省自然科学基础研究计划(2016JZ013)

Compressive sensing algorithm for sound source location of aircraft landing gear

  • NING Fangli ,
  • ZHANG Chao ,
  • PAN Feng ,
  • LIU Yong ,
  • WEI Juan
Expand
  • 1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Telecommunications Engineering, Xidian University, Xi'an 710071, China

Received date: 2017-10-18

  Revised date: 2018-01-24

  Online published: 2018-01-24

Supported by

National Natural Science Foundation of China (51675425,51375385); Natural Science Basic Research Plan in Shaanxi Province (2016JZ013)

摘要

目前针对飞机起落架噪声源定位的研究方法主要是将麦克风阵列与波束成形算法相结合。常规波束成形(CBF)算法在计算时存在主瓣宽度过宽、结果易受旁瓣影响的问题。高级波束成形算法在计算时效率较差,有时会有违背物理现象的假声源出现。提出了一种将正交匹配追踪(OMP)算法与奇异值分解(SVD)相结合的起落架噪声源定位的OMP-SVD压缩感知算法。在消声实验室内进行飞机起落架噪声源定位试验,将OMP-SVD算法、CBF算法和OMP算法在不同频率下获得的结果进行对比。试验结果表明:①与OMP算法相比,OMP-SVD算法在不同频率下均能准确定位出起落架主声源;②与CBF算法相比,OMP-SVD算法显著提高了分辨率。

本文引用格式

宁方立 , 张超 , 潘峰 , 刘勇 , 韦娟 . 飞机起落架噪声源定位的压缩感知算法[J]. 航空学报, 2018 , 39(5) : 121810 -121810 . DOI: 10.7527/S1000-6893.2018.21810

Abstract

At present, source location of aircraft landing gear is investigated mainly by combining microphone arrays with beamforming algorithms. The Conventional BeamForming (CBF) method has the drawbacks that the main lobe is too wide and the computation result is susceptible to sidelobes. For the advanced beamforming algorithm, the computing time is too long, and false sound sources sometimes occur. This paper presents a new method, which combines the Orthogonal Matching Pursuit (OMP) algorithm with Singular Value Decomposition (SVD), to locate the noise source of the landing gear. Experiments are conducted in the anechoic chamber, the results obtained by three different methods at different frequencies are compared. The experimental results show that compared with the OMP algorithm, the OMP-SVD algorithm can locate the main sources of the landing gear at different frequencies accurately; compared with the CBF algorithm, the OMP-SVD algorithm can improve the resolution significantly.

参考文献

[1] 张卫民, 郝璇, 陈大斌, 等. 大型客机气动噪声预测[J]. 航空制造技术, 2010, 14(7):66-69. ZHANG W M, HAO X, CHEN D B, et al. Aeroacoustic prediction of large commercial aircraft[J]. Aeronautical Manufacturing Technology, 2010, 14(7):66-69(in Chinese).
[2] DOBRZYNSKI W. Almost 40 years of airframe noise research:What did we achieve?[J]. Journal of Aircraft, 2010, 47(2):353-367.
[3] CHOW L C, MAU K, REMY H. Landing gears and high lift devices airframe noise research:AIAA-2002-2408[R]. Reston, VA:AIAA, 2002.
[4] RAVETTA P A, BURDISSO R A, NG W F. Wind tunnel aeroacoustic measurements of a 26%-scale 777 main landing gear mode:AIAA-2004-2885[R]. Reston, VA:AIAA, 2004.
[5] LI Y, SMITH M, ZHANG X. Measurement and control of aircraft landing gear broadband noise[J]. Aerospace Science and Technology, 2012, 23(1):213-223.
[6] QUAYLE A R, DOWLING A P, BABINSKY H, et al. Phased array measurements from landing gear models:AIAA-2007-3463[R]. Reston, VA:AIAA, 2007.
[7] QUAYLE A R, DOWLING A P, GRAHAM W R, et al. Obtaining absolute acoustic spectra in an aerodynamic wind tunnel[J]. Journal of Sound and Vibration, 2011, 330(10):2249-2264.
[8] BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294(4):856-879.
[9] BLACODON D, ELIAS G. Level estimation of extended acoustic sources using a parametric method[J]. Journal of Aircraft, 2004, 41(6):1360-1369.
[10] BLACODON D. Array processing for noisy data:Application for open and closed wind tunnels[J]. AIAA Journal, 2011, 49(1):55-67.
[11] 陈正武, 王勋年, 李征初, 等. 基于声学风洞的麦克风阵列测试技术应用研究[J]. 实验流体力学, 2012, 26(3):84-90. CHEN Z W, WANG X N, LI Z C, et al. Application investigation of microphone array measuring and testing technique in anechoic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):84-90(in Chinese).
[12] HUANG X. Real-time location of coherent sound sources by the observer-based array algorithm[J]. Measurement Science and Technology, 2011, 22(6):1-9.
[13] HUANG X. Real-time algorithm for acoustic imaging with a microphone array[J]. The Journal of the Acoustical Society of America, 2009, 125(5):EL190-EL195.
[14] SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3):276-280.
[15] SIJTAMA P. CLEAN based on spatial source coherence[J]. International Journal of Aeroacoustics, 2007, 6(4):357-374.
[16] DOUGHERTY R P. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming:AIAA-2005-2961[R]. Reston, VA:AIAA, 2005.
[17] BROOKS T F, HUMPHREYS W M. Three-dimensional application of DAMAS methodology for aeroacoustic noise source definition:AIAA-2005-2960[R]. Reston, VA:AIAA, 2005.
[18] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[19] CANDÈS E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
[20] WAGNER N, ELDAR Y C, FRIEDMAN Z. Compressed beamforming in ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2012, 60(9):4643-4657.
[21] DUARTE M F, DAVENPORT M A, TAKBAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):83-91.
[22] LUSTIG M, DONOHO D L, SANTOS J M, et al. Compressed sensing MRI[J]. IEEE Signal Processing Magazine, 2008, 25(2):72-82.
[23] BAI M R, KUO C H. Acoustic source localization and deconvolution-based separation[J]. Journal of Computational Acoustics, 2015, 23(2):1550008.
[24] ZHONG S, WEI Q, HUANG X. Compressive sensing beamforming based on covariance for acoustic imaging with noisy measurements[J]. The Journal of the Acoustical Society of America, 2013, 134(5):EL445-EL451.
[25] NING F L, WEI J G, QIU L F, et al. Three-dimensional acoustic imaging with planar microphone arrays and compressive sensing[J]. Journal of Sound and Vibration, 2016, 380:112-128.
[26] NING F L, LIU Y, ZHANG C, et al. Acoustic imaging with compressed sensing and microphone arrays[J]. Journal of Computational Acoustics, 2017, 25(4):1750027.
[27] 宁方立, 卫金刚, 刘勇, 等. 压缩感知声源定位方法研究[J]. 机械工程学报, 2016, 52(19):41-52. NING F L, WEI J G, LIU Y, et al. Study on sound sources localization using compressive sensing[J]. Journal of Mechanical Engineering, 2016, 52(19):41-52(in Chinese).
[28] CHU N, MOHAMMAD-DJAFARI A, PICHERAL J. Robust Bayesian super-resolution approach via sparsity enforcing a priori for near-field aeroacoustic source imaging[J]. Journal of Sound and Vibration, 2013, 332(18):4369-4389.
[29] PAPADIMITRIOU C H. The NP-completeness of the bandwidth minimization problem[J]. Computing, 1976, 16(3):263-270.
[30] CANDES E J, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[31] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9):589-592.
[32] MALLAT S G, ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[33] NEEDEEL D, TROPP J A. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3):301-321.
[34] KALMAN D. A singularly valuable decomposition:The SVD of a matrix[J]. The College Mathematics Journal, 1996, 27(1):2-23.
[35] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
[36] CHU N, PICHERAL J, MOHAMMAD-DJAFARI A, et al. A robust super-resolution approach with sparsity constraint in acoustic imaging[J]. Applied Acoustics, 2014, 76:197-208.
文章导航

/