对于现代高超声速飞行器的设计而言,除了需要保证高超声速的性能外,还必须兼顾满足工程需求的亚跨超声速特性。首先,采用雷诺平均Navier-Stokes(RANS)方程流动求解器,结合基于Kriging模型的代理优化算法,开展了高超声速飞行器宽速域翼型的优化设计研究,设计出了一种下表面具有双"S"形特征的新翼型。综合性能评估结果表明,该翼型相比于常规的高超声速翼型,在跨声速和高超声速下具有更加优良的气动特性;其跨声速状态下的升阻比达到78.9,高超声速状态下的升阻比达到5.94,能够实现宽速域内良好的综合气动性能。其次,开展了仿德国"桑格尔号"(SANGER)空天飞机运载机机翼的气动特性研究,对配置宽速域翼型与常规高超声速翼型的机翼进行了气动力特性综合对比分析。结果表明,配置新翼型的机翼在宽速域范围内整体气动性能更优,说明所设计的宽速域翼型在三维机翼上也具有一定的实用价值。
The study of wider-range Mach number configuration is of great importance for the development of hypersonic vehicles. This study is aimed at designing a wider-range Mach number airfoil based on Reynolds-Averaged Navier-Stokes (RANS) equations and the surrogate-based optimization method based on kriging model. An airfoil with a lower surface of double "S" shape is designed. The aerodynamic characteristics of the designed airfoil are compared with quadrilateral and hexagon airfoils. Results show that the lift-to-drag ratio of the new airfoil is as large as 78.9 in transonic flow, and the lift-drag ratio reaches 5.94 in hypersonic flow. The aerodynamic characteristics of SANGER wing with the new airfoil is compared with that of the wing with quadrilateral and hexagon airfoils. In a word, the new airfoil as well as the wing with the new airfoil can achieve good overall aerodynamic performance at a wider-range Mach numbers, and is supposed to be applied to the design of the wider-range Mach number airfoil/wing for hypersonic vehicle applications.
[1] 吴子牛, 白晨媛, 李娟. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1):63-90. WU Z N, BAI C Y, LI J. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):63-90(in Chinese).
[2] 罗金玲, 李超, 徐锦. 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36(1):39-48. LUO J L, LI C, XU J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48(in Chinese).
[3] 曹长强, 蔡晋生, 段焰辉. 超声速翼型气动优化设计[J]. 航空学报, 2015, 36(12):21-31. CAO C Q, CAI J S, DUAN Y H. Aerodynamic design optimization of supersonic airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):21-31(in Chinese).
[4] UENO A, SUZUKI K. CFD-based shape optimization of hypersonic vehicles considering transonic aerodynamic performance:AIAA-2008-288[R]. Reston, VA:AIAA, 2008.
[5] HAN Z H, HE F, SONG W P, et al. A preconditioned multigrid method for efficient simulation of three-dimensional compressible and incompressible flows[J]. Chinese Journal of Aeronautics, 2007, 20(4):289-296.
[6] XIE F, SONG W P, HAN Z H. Numerical study of high-resolution scheme based on preconditioning method[J]. Journal of Aircraft, 2009, 46(2):520-525.
[7] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[8] HAN Z H. SURROOPT:A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]//30th Congress of the International Council of the Aeronautical Sciences, 2016.
[9] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2016, 55(3):925-943.
[10] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[J]. La Recherche Aérospatiale, 2003, 439(1):5-21.
[11] 韩忠华. 旋翼绕流的高效数值计算方法及主动流动控制研究[D]. 西安:西北工业大学,2007. HAN Z H. Efficient method for simulation of viscous flows past helicopter rotors and active flow control[D]. Xi'an:Northwestern Polytechnical University, 2007(in Chinese).
[12] KULFAN B M, BUSSOLETTI J E. Fundamental parametric geometry representations for aircraft component shapes:AIAA-2006-6948[R]. Reston, VA:AIAA, 2006.
[13] KULFAN B M. A universal parametric geometry representation method-"CST":AIAA-2007-0062[R]. Reston, VA:AIAA, 2007.
[14] COOK P H,MCDONALD M A,FIRMIN M C P. Aerofoil RAE2822-Pressure distributions, and boundary layer and wake measurements:AGARD AR 138[R]. Paris:AGARD, 1979
[15] WILCOX F, BIRCH T, ALLEN J. Force, surface pressure, and flowfield measurements on a slender missile configuration with square cross-section at supersonic speeds[C]//22nd Applied Aerodynamics Conference and Exhibit, 2004.
[16] WEINGERTNER S. SAENGER-The reference concept of the German hypersonics technology program:AIAA-1993-5161[R]. Reston,VA:AIAA, 1993.
[17] KUCZERA H, SACHER P, KRAMMER P. The German hypersonics programme-status report:AIAA-1991-5001[R]. Reston,VA:AIAA, 1991.