材料工程与机械制造

高焓化学非平衡流条件下C/SiC复合材料的催化性能

  • 刘丽萍 ,
  • 王国林 ,
  • 王一光 ,
  • 张军 ,
  • 罗磊
展开
  • 1. 中国空气动力研究与发展中心 超高速空气动力研究所, 绵阳 621000;
    2. 西北工业大学 超高温结构复合材料重点实验室, 西安 710072

收稿日期: 2017-08-25

  修回日期: 2017-12-29

  网络出版日期: 2017-12-29

基金资助

国家自然科学基金(51172181,11602289)

Catalytic performance of C/SiC composites in high enthalpy chemical non-equilibrium flow

  • LIU Liping ,
  • WANG Guolin ,
  • WANG Yiguang ,
  • ZHANG Jun ,
  • LUO Lei
Expand
  • 1. Ultrahigh Speed Aerodynamics Research Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Key Laboratory of Science and Technology on Thermostructural Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-08-25

  Revised date: 2017-12-29

  Online published: 2017-12-29

Supported by

National Natural Science Foundation of China (51172181,11602289)

摘要

碳化硅陶瓷基复合材料(C/SiC)成为最有希望满足临近空间高超声速飞行器热防护要求的耐高温关键材料之一,其在高焓化学非平衡流条件下的催化性能是评估新一代高超声速飞行器表面气动热载荷,热防护系统精细化设计的关键参数。基于1 MW高频等离子体风洞,采用已建立起的防热材料催化特性试验测试方法开展了C/SiC材料在驻点压力分别为1.0、1.8、3.3和6.0 kPa,焓值为19.3~35.9 MJ/kg范围内的高焓离解空气环境下,在表面温度为1 453~2 003 K范围内的表面催化反应复合效率随表面温度和表面原子压力的变化关系研究。试验结果表明:C/SiC材料在高温条件下的表面催化复合效率应该同时被定义为表面温度、驻点压力和原子分压的函数。根据试验所得到的催化数据,计算了采用C/SiC作为钝头体材料的美国某典型飞行器(飞行高度H=73 km,飞行速度U=6.478 km/s,钝头体半径Rn=410 mm)的气动热环境参数,获得了考虑完全催化和有限催化条件下飞行器表面温度变化历程,结果进一步验证了飞行器热防护系统所承受的气动热载荷以及表面温度响应在很大程度上受到防热材料表面催化特性的影响。

本文引用格式

刘丽萍 , 王国林 , 王一光 , 张军 , 罗磊 . 高焓化学非平衡流条件下C/SiC复合材料的催化性能[J]. 航空学报, 2018 , 39(5) : 421696 -421696 . DOI: 10.7527/S1000-6893.2017.21696

Abstract

Ultrahigh temperature ceramic matrix composite (C/SiC) is one of the key materials for the Thermal Protection System (TPS) of near space vehicles. The catalytic performance of the C/SiC material in the high enthalpy chemical non-equilibrium flow is the key parameter of the design, optimization and accurate evaluation of the thermal protection system of the hypersonic flight vehicle. Using the high frequency plasma wind tunnel, the surface catalytic recombination coefficients of C/SiC were determined at the surface temperature range of 1453-2003 K, in the high disassociated air with the enthalpies of 19.3-35.9 MJ/kg, and with the stagnation pressures of 1.0,1.8,3.30 and 6.0 kPa. It shows that the catalytic recombination coefficient of C/SiC under high surface temperature condition depends not only on the surface temperature but also on stagnation point pressure and the partial pressure. According to the catalytic results, the aerothermal parameters for the typical America reentry flight (H=73 km,U=6.478 km/s, Rn=410 mm) with blunt body using C/SiC and its surface temperature history with test catalytic data and full-catalytic have been carried out. The results have strengthened that accurate estimation of the aerodynamic heating and temperature response to thermal protection system are greatly affected by catalytic performance of thermal protection material.

参考文献

[1] 崔尔杰. 近空间飞行器研究发展现状及关键技术问题[J]. 力学进展, 2009, 39(6):658-673. CUI E J. Research statutes development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics, 2009, 39(6):658-673(in Chinese).
[2] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 2000:1988-1989.
[3] 瞿章华. 高超声速空气动力学[M]. 长沙:国防科技大学出版社, 2001. QU Z H. Hypersonic aerodynamics[M]. Changsha:National Defence Science and Technology Press, 2001(in Chinese).
[4] 孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7):1749-1775. MENG S H, DING X H, YI F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1749-1775(in Chinese).
[5] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302(in Chinese).
[6] NASLSIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors[J]. Composites Science and Technology, 2004, 64(2):155-170.
[7] 张立同. 纤维增韧碳化硅陶瓷复合材料:模拟、表征与设计[M]. 北京:化学工业出版社, 2009. ZHANG L T. Fiber-reinforced silicon carbide ceramic composites:Modelling, characterization & design[M]. Beijing:Chemical Industry Press, 2009(in Chinese).
[8] 张立同, 成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. ZHANG L T, CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1-6(in Chinese).
[9] CHENG L F, XU Y D, ZHANG L T, et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J]. Carbon, 2001, 39(8):1127-1133.
[10] CHENG L F, XU Y D, ZHANG L T, et al. Oxidation and defect control of CVD SiC coating on three dimensional C/SiC composites[J]. Carbon, 2002, 40(12):2229-2234.
[11] CHENG L F, XU Y D, ZHANG L T, et al. Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500℃[J]. Materials Science and Engineering A, 2001, 30(2):219-225.
[12] GOULARD R. On catalytic recombination rates in hypersonic stagnation heat transfer[J]. Jet Propulsion, 1958, 28(11):737-745.
[13] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory, AIAA-2000-2366[R]. Reston,VA:AIAA, 2000.
[14] WILLEY R J. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(1), 55-62.
[15] GORDEEV A N, KOLESNIKOV A F, YAKUSHIN M I. Effect of surface catalytic activity on non-equilibrium heat transfer in a subsonic jet of dissociated nitrogen[J]. Fluid Dynamics, 1985, 20(3):478-484.
[16] KOVALEV V L,KOLESNIKOV A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry[J]. Fluid Dynamics, 2005, 40(5):669-693.
[17] ITO T, KUROTAKI T, SUMI T, et al. Evaluation of surface catalytic effect on TPS in 110kW ICP-heated wind tunnel:AIAA-2005-189[R]. Reston, VA:AIAA, 2005.
[18] ITO T, ISHIDA K, MIZUNO, et al. 110 kW new high enthalpy wind tunnel heated by inductively coupled plasma:AIAA-2003-7023[R]. Reston, VA:AIAA, 2003.
[19] 刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J]. 航空学报, 2017, 38(10):121317. LIU L P, WANG G L,WANG Y G, et al. The methods to determine surface catalytic recombination coefficients of thermal protection material in high enthalpy dissociated flows[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121317(in Chinese).
[20] LIU L P, WANG Y G, WANG G L, et al. Experiments to determine surface catalytic recombination coefficients of ultra high temperature ceramics in high temperature dissociated flows:AIAA-2017-2153[R]. Reston, VA:AIAA, 2017.
[21] FRANCESCO P, OLIVIER C, BERND H, et al. Gas/surface interaction study on ceramic matrix composite thermal protection system in the VKI plasmatron facility:AIAA-2011-3642[R]. Reston, VA:AIAA, 2011.
[22] CHAZOT O, PANERAIY F, MUYLAERT J M. Catalysis phenomena determination in plasmatron facility for flight experiment design:AIAA-2010-1248[R]. Reston, VA:AIAA, 2010.
[23] STEWART D A. Determination of surface catalytic efficiency for thermal protection materials-room temperature to their upper use limit:AIAA-1996-1869[R]. Reston, VA:AIAA,1996.
[24] PIDAN S, KURTZ M A, HERDRICH G M, et al. Recombination coefficients and spectral emissivity of silicon carbide-based thermal protection materials[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(4):37-46.
[25] VLASOV A V, ZALOGIN G N, ZEMLYANSKⅡ B A, et al. Methods and results of an experimental determination of the catalytic activity of materials at high temperature[J]. Fluid Dynamics, 2003, 38(5):815-825.
文章导航

/