设计了一种石英夹层感性耦合等离子体(ICP)隐身天线罩模型,采用有限元与Z变换时域有限差分(ZT-FDTD)联合仿真的方法,建立了ICP放电的流体模型,得到不同气压及功率下与电磁散射相关的电子密度空间分布,在此基础上建立Z变换时域有限差分法模型,对石英夹层等离子体隐身天线罩的宽频段后向散射进行计算,同时利用微波干涉法及XFDTD软件对算法及程序进行验证。结果表明:感性耦合等离子体可产生较高密度等离子体,能有效实现雷达散射截面(RCS)的减缩,在气压为2 Pa时,碰撞衰减较弱,等离子体密度分布较均匀,衰减带宽集中在等离子体振荡频率附近,功率增加会使衰减峰值向高频方向移动,气压为20 Pa时,碰撞衰减增强,且等离子体密度分布有较大梯度,衰减带宽有效增加,同时RCS曲线的波动特性加强。
A stealth radome model with Inductively Coupled Plasma (ICP) in the interlayer chamber is designed. A two-dimensional fluid model of ICP discharge is built by integrating the finite element method and the ZT-FDTD method. The electron density distribution related to the electromagnetic scattering with different power and pressure is obtained. The FDTD method for Z transformation is established to calculate the backscatter of the plasma radome on the broadband. Microwave interference diagnosis and XFDTD software are used to validate the calculation. The results show that the ICP can produce high density plasma, and can effectively achieve the reduction of the Radar Cross Section (RCS). At 2 Pa air pressure, the electron density distribution is uniform, the collisional absorption of plasma is relatively weak, the bandwidth of the attenuation of RCS is concentrated near the plasma frequency, and the attenuation peak will move to high frequency zone with the increase of the power. At 20 Pa air pressure, the collisional absorption of the plasma is obviously improved to have larger gradient in density distribution of electrons, the bandwidth of the attenuation of RCS increases effectively, and the wave characteristics of the RCS profile is strengthened at the same time.
[1] SINGH A, DESTLER W W, CATRAVAS P. Experimental study of interaction of microwave with a nonmagnetized pulsed-plasma column[J]. Journal of Applied Physics, 1992, 72(5):1707-1719.
[2] DAVID H L. Plasma stealth[J]. New Scientist, 2000, 168(2264):60.
[3] 白希尧, 张芝涛, 杨波, 等. 用于飞行器的强电离放电非平衡等离子体隐身方法研究[J]. 航空学报, 2004, 25(1):52-54. BAI X Y, ZHANG Z T, YANG B, et al. Study on the method of non-Equiblium plasma stealth by using strong ionization discharge[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(1):52-54(in Chinese).
[4] 赵文锋, 杨洲, 王卫星, 等. 基于CFDRC的感应耦合等离子体离子数密度空间分布仿真[J]. 高电压技术, 2014,40(1):206-211. ZHAO W F, YANG Z, WANG W X, et al. Simulation on the spatial distribution of ICP ion number density based on CFDRC[J]. High Voltage Engineering, 2014, 40(1):206-211(in Chinese).
[5] NAKAGAWA H, MORISHITA S, NODA S, et al. Characterization of 100 MHz inductively coupled plasma ICP by comparison with 13.56 MHz ICP[J]. Journal of Vacuum Science & Technology A, 1999, 17(4):1514-1519.
[6] MAHONEY L J, WENDT A E, BARRIROS E, et al. Electron-density and energy distributions in a planar inductively coupled discharge[J]. Journal of Applied Physics, 1994, 76:2041-2047.
[7] 常雨, 陈伟芳, 孙明波, 等. 等离子体涡电磁散射特性及隐身性能[J]. 航空学报, 2008, 29(2):304-308. CHANG Y, CHEN W F, SUN M B, et al. Scattering and stealth of plasma vortex[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):304-308(in Chinese).
[8] 陈楠. 基于FDTD等离子体天线隐身及辐射性能研究[D]. 衡阳:南华大学, 2010:31-32. CHEN N. Research on plasma antenna stealth and radiation performance based on FDTD method[D]. Hengyang:University of South China, 2010:31-32(in Chinese).
[9] BRUSKI L G, MASE A, TAMANO T, et al. Application of one-dimensional Wentzel-Kramers-Brillouin approximation in microwave reflectometry of plasma density profiles[J]. Review of Scientific Instruments, 1998, 65(5):2184-2185.
[10] 刘少斌, 莫锦军, 袁乃昌. 非磁化等离子体密度与目标雷达隐身的关系[J]. 电波科学学报, 2003, 18(1):57-61. LIU S B, MO J J, YUAN N C. Research on the relation between the unmagnetized plasma density and the stealth of target[J]. Chinese Journal of Radio Science, 2003, 18(1):57-61(in Chinese).
[11] SULLIVAN D M. Frequency-dependent FDTD method using Z transforms[J]. IEEE Transactions on Antennas Propagation, 1992, 40(10):1223-1230.
[12] LIU M, HU X, JIANG Z. Attenuation of wave in a thin plasma layer by finite-difference time-domain analysis[J]. Journal of Applied Physics, 2007, 101(5):1661.
[13] 张文茹. 氩气放电的流体力学模拟及其COMSOL软件的验证[D]. 大连:大连理工大学, 2013:8-9. ZHANG W R. The fluid simulation of argon discharge and its verification with COMSOL software[D]. Dalian:Dalian University of Technology, 2013:8-9(in Chinese).
[14] ANGEL O B, CORNELIA B. Fast and reliable simulations of argon inductively coupled plasma using COMSOL[J]. Vacuum, 2015, 116:65-72.
[15] MORAVEJ M. Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma[J]. Plasma Sources Science & Technology, 2006, 15(2):204-210.
[16] 杨利霞, 许红蕾, 孙栋, 等. 双各向异性色散介质电磁波传播Z-时域有限差分分析[J]. 电波科学学报, 2015, 30(3):423-428. YANG L X, XU H L, SUN D, et al. Electromagnetic scattering by bianisotropic dispersive media by using Z-FDTD method[J]. Chinese Journal of Radio Science, 2015, 30(3):423-428(in Chinese).
[17] ELSHERBENI A Z, DEMIR V. The finite-difference time-domain method for electromagnetics with MATLAB simulation[M]. North Carolina:SciTech publishing Inc., 2006:31-40.
[18] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安:西安电子科技大学出版社, 2011:83-96. GE D B, YAN Y B. Finite-difference time-domain method for electromagnetic waves[M]. 3rd ed. Xi'an:Xidian University Press, 2011:83-96(in Chinese).
[19] BRAINTHWAITE N St J. Introduction to gas discharge[J]. Plasma Sources Science and Technology, 2000, 9(4):517-527.
[20] LICHTENBERG A J, LIEBERMAN M A. Principles of plasma discharges and materials processing[M]. New York:John Wiley & Sons, Inc., 2005:304-305.
[21] 杜寅昌, 曹金祥, 汪建, 等. 射频电感耦合夹层等离子体中的模式转换[J]. 物理学报. 2012, 6(19):337-342. DU Y C, CAO J X, WANG J, et al. Mode transition of inductively coupled plasma in interlayer chamber[J]. Acta Physica Sinica, 2012, 6(19):337-342(in Chinese).
[22] LIU S B, YUAN N C, MO J J. A novel FDTD formulation for dispersive media[J]. IEEE Microwave and Wireless Compoents Letters, 2003, 13(5):187-189.