固体力学与飞行器总体设计

高速流场中变刚度复合材料层合板颤振分析

  • 欧阳小穗 ,
  • 刘毅
展开
  • 同济大学 航空航天与力学学院, 上海 200092

收稿日期: 2017-06-21

  修回日期: 2017-12-07

  网络出版日期: 2017-12-07

基金资助

国家级项目

Panel flutter of variable stiffness composite laminates in supersonic flow

  • OUYANG Xiaosui ,
  • LIU Yi
Expand
  • School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Received date: 2017-06-21

  Revised date: 2017-12-07

  Online published: 2017-12-07

Supported by

National Level Program

摘要

变刚度复合材料层合板在高速流场中的颤振行为是设计中需要考虑的问题。本文研究了高速流场中的曲线纤维变刚度层合复合材料壁板非线性颤振响应,分析了边界条件和纤维方向对颤振特性的影响。利用von-Karman大变形应变-位移关系,采用气动力活塞理论,根据虚功原理和有限元法建立变刚度复合材料壁板颤振的气动弹性力学模型,采用Newmark法对壁板的颤振方程求解。给出了不同边界条件和纤维方向条件下层合复合材料壁板的颤振特性。计算结果表明:随着纤维在板中心处或在边界±a/2处与x方向夹角(T0T1)的增大,颤振临界动压减小;相同动压下,随着T0T1的增大,极限环振幅增大。研究表明采用曲线纤维进一步提高了复合材料层合板的可设计性,通过调整曲线纤维路径可以改变复合材料壁板的颤振特性。

本文引用格式

欧阳小穗 , 刘毅 . 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报, 2018 , 39(3) : 221539 -221539 . DOI: 10.7527/S1000-6893.2017.21539

Abstract

Panel flutter behaviour of variable stiffness laminates in high supersonic flow is of great interest in design. The nonlinear flutter behaviour of variable stiffness composite laminates with curvilinear fibers in high supersonic flow is investigated, and effects of boundary condition and ply orientation are studied. The classical lamination theory along with the von-Karman large deflection strain-displacement relationship is used for structural modeling, and the linear piston theory is used for aerodynamic modeling. The aeroelastic model of panel flutter is established based on the principle of virtual work and the finite element method, which is then solved by Newmark method. The flutter behavior under different boundary conditions and ply orientation are obtained. The results show that the critical dynamic pressure decreases as the path orientations in the center and vertical edges of a plate (T0 or T1) increases, and the limit cycle amplitude increases as T0 or T1 increases under the same dynamic pressure. It also turns out that the designability of composite laminates can be improved by using curvilinear fibers, the flutter behaviour of variable stiffness composite laminates can be changed by varying the fiber orientation.

参考文献

[1] MILES J W. Dynamic chordwise stability at supersonic speeds:Report AL-1140[R]. Dundalk, MD:North American Aviation, Inc., 1950.
[2] JORDAN P F. The physical nature of panel flutter[J]. Aero Digest, 1956, 72(2):34-38.
[3] OLSON M D. Finite elements applied to panel flutter[J]. AIAA Journal, 1967, 5(12):2267-2270.
[4] OLSON M D. Some flutter solutions using finite elements[J]. AIAA Journal, 1970, 8(4):747-752.
[5] KOUCHAKZADEH M A, RASEKH M, HADDADPOUR H. Panel flutter analysis of general laminated composite plates[J]. Composite Structures, 2010, 92(12):2906-2915.
[6] ABDEL-MOTAGLAY K, CHEN R, MEI C. Nonlinear flutter of composite panels under yawed supersonic flow using finite elements[J]. AIAA Journal, 1999, 37(9):1025-1032.
[7] SINGHA M K, GANAPATHI M. A parametric study on supersonic flutter behavior of laminated composite skew flat panels[J]. Composite Structures, 2005, 69(1):55-63.
[8] 王晓庆, 韩景龙, 张军红. 不同气流偏角下的壁板热颤振分析及多目标优化设计[J]. 航空学报, 2010, 31(11):2195-2201. WANG X Q, HAN J L, ZHANG J H. Thermal flutter analysis of panel and multi-objective optimization design considering variation of flow yaw angle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2195-2201(in Chinese).
[9] 苑凯华, 邱志平. 含不确定参数的复合材料壁板热颤振分析[J]. 航空学报, 2010, 31(1):119-124. YUAN K H, QIU Z P. Thermal flutter analysis of composite panel with uncertain parameters[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):119-124(in Chinese).
[10] 苑凯华, 邱志平. 高超声速气流中复合材料壁板热颤振分析[J]. 南京航空航天大学学报, 2010, 42(3):313-317. YUAN K H, QIU Z P. Flutter analysis of composite panels in hypersonic flow with thermaleffects[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3):313-317(in Chinese).
[11] 杨智春, 谭光辉, 夏巍. 铺层方式对复合材料壁板热颤振特性的影响[J]. 宇航学报, 2008, 29(3):1047-1052. YANG Z C, TANG G H, XIA W. Thermal flutter analysis of composite panel with uncertain parameters[J]. Journal of Astronautics, 2008, 29(3):1047-1052(in Chinese).
[12] 高扬, 杨智春, 谷迎松. 气流偏角对不同形状复合材料壁板热颤振特性的影响[J]. 振动与冲击, 2014, 33(11):65-69. GAO Y, YANG Z C, GU Y S. Effects of flow yaw angle on thermal flutter characteristics of composite panels with differentshapes[J]. Journal of Vibration and Shock, 2014, 33(11):65-69(in Chinese).
[13] 吕秀秀, 李凤明, 宋智广. 超声速复合材料层合壁板结构的颤振特性分析[J]. 计算力学学报, 2013, 30(S1):140-143. LV X X, LI F M, SONG Z G. Flutter characteristic analysis of supersonic composite laminated panel[J]. Chinese Journal of Computational Mechanics, 2013, 30(S1):140-143(in Chinese).
[14] AKHAVAN H, RIBEIRO P. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers[J]. Composite Structures, 2011, 93(11):3040-3047.
[15] HYER M W, CHARETTE R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6):1011-1015.
[16] HYER M W, LEE H H. The use of curvilinear fiber format to improve buckling resistance of composite plates with central holes[J]. Composite Structures, 1991, 18(3):239-261.
[17] GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations:Variable stiffness concept[J]. AIAA Journal, 1993, 31(4):751-758.
[18] LOPES C S, CAMANHO P P, GÜRDAL Z, et al. Progressive failure analysis of tow-placed, variable-stiffness composite panels[J]. International Journal of Solids and Structures, 2007, 44(25-26):8493-8516.
[19] GÜRDAL Z, TATTING B F, WU C K. Variable-stiffness composite panels:Effects of stiffness variation on the in-plane and buckling response[J]. Composites:Part A, 2008, 39(5):911-922.
[20] LOPES C S, GÜRDAL Z, CAMANHO P P. Variable-stiffness composite panels:Buckling and first-ply failure improvements over straight-fiber laminates[J]. Computers and Structures, 2008, 86(9):897-907.
[21] WU Z, WEAVER P M, RAJU G, et al. Buckling analysis and optimisation of variable angle tow composite plates[J]. Thin-Walled Structures, 2012, 60(10):63-172.
[22] WU Z, RAJU G, WEAVER P M. Postbuckling analysis of variable angle tow composite plates[J]. International Journal of Solids and Structures, 2013, 50(10):1770-1780.
[23] 杜宇, 杨涛, 李志猛, 等. 纤维曲线铺放的变刚度复合材料层合板的失效分析[J]. 宇航材料工艺, 2013, 43(5):22-25. DU Y, YANG T, LI Z M, et al. Failure analysis of variable-stiffness composite laminates with curvilinear fiber placement[J]. Aerospace Materials & Technology, 2013, 43(5):22-25(in Chinese).
[24] STODIECK O, COOPER J E, WEAVER P M, et al. Improved aeroelastic tailoring using tow-steered composites[J]. Composite Structures, 2013, 106:703-715.
[25] STODIECK O, COOPER J E, WEAVER P M. Optimization of tow-steered composite wing laminates for aeroelastic tailoring[J]. AIAA Journal, 2015, 53(8):2203-2215.
[26] STODIECK O, COOPER J E, WEAVER P M. Aeroelastic tailoring of a representative wing box using tow-steered composites[J]. AIAA Journal, 2017, 55(4):1425-1439.
[27] HADDADPOUR H, ZAMANI Z. Curvilinear fiber optimization tools for aeroelastic design of composite wings[J]. Journal of Fluids and Structures, 2012, 33(5):180-190.
[28] STANFORD B K, JUTTE C V, WU K C. Aeroelastic benefits of tow steering for composite plates[J]. Composite Structures, 2014, 118:416-422.
[29] PIDAPARTI R M V, YANG H T Y.Supersonic flutter analysis of composite plates and shells[J]. AIAA Journal, 1993, 31(6):1109-1117.
[30] ZHOU R C, XUE D Y, MEI C. Finite element time domain-modal formulation for nonlinear flutter of composite panels[J]. AIAA Journal, 1994, 32(10):2044-2052.
文章导航

/