弹道/轨道一体化设计是解决空天飞行器发射入轨和轨道转移问题的一种全新思路。针对目前存在的空天飞行器弹道/轨道一体化设计问题,通过改进非开普勒轨道方程的方法建立飞行器在连续推力、气动力、引力以及摄动力等多种力作用下的弹道/轨道一体化设计动力学模型;提出基于轨道设计反方法的弹道/轨道一体化设计方法。其创新点主要体现在:通过整合连续推力、气动力、引力以及摄动力等多种作用力达到了统一弹道/轨道模型的目的;提出了基于傅里叶级数形状方法的轨道设计方法,该方法相比于之前的逆多项式法,可以处理带推力约束的轨道设计问题;由于在弹道段采用类似于轨道设计反方法的设计思想设计弹道,使得弹道和轨道两段轨迹的设计方法也达到了统一,致使从模型和设计方法的角度都体现了弹道/轨道设计的统一性,解决了传统分段设计方法是在不同段采用不同的模型和方法,很难体现出一体化设计思想的问题。仿真分析表明本文提出的弹道/轨道一体化设计方法是可行和有效的。
This paper proposes a novel trajectory-orbit unified approach for the trajectory design of the aerospace vehicle, which includes the launching phase and the orbit transfer phase. First, a unified dynamical model for the trajectory and orbit under the action of continuous thrust, aerodynamic force, gravitational force and perturbative force is established by improving the non-Keplerian equations. Then, an algorithm based on the shape-based method is developed for the unified design of the trajectory and orbit. The contributions of the proposed method are as follows: the low thrust, gravity, aerospace dynamic force and perturbation are unifiedly modeled to develop a novel dynamics model that can be utilized for the design of both trajectory and orbit; a shaping method based on the Furious series method is developed for the design of the thrust constraints trajectory; with the inverse method, the whole trajectory design including the launching phase and the orbital transfer phase is designed unifiedly, which can simplify the trajectory design and optimization for aerospace vehicle. Simulation results verify the effectiveness and feasibility of the proposed unified method.
[1] 赵瑞安.空间武器轨道设计[M]. 北京:中国宇航出版社, 2008:176-178. ZHAO R A. Space weapon orbit design[M]. Beijing:China Astronautic Press, 2008:176-178(in Chinese).
[2] 黄文博, 张强, 肖飞,等. 空间快速响应航天器轨道/弹道一体化规划[J]. 固体火箭技术, 2012, 35(1):11-16. HANG W B, ZHANG Q, XIAO F, et al.Orbit-trajectory integrated programming for operationally responsive space spacecraft[J]. Journal of Solid Rocket Technology, 2013, 35(1):11-16(in Chinese).
[3] 肖飞, 向敏, 张卫华. 多级运载火箭总体/弹道/轨道一体化设计与优化[J]. 空军工程大学学报, 2008, 9(5):19-23. XIAO F, XIANG M, ZHANG W H. Orbit trajectory and system integration design and optimization of multi-stage solid rocket[J]. Journal of Airforce Engineering University, 2008, 9(5):19-23(in Chinese).
[4] 罗亚中, 唐国金, 梁彦刚, 等.近地轨道运载火箭轨迹/总体参数一体化设计与优化[J]. 中国空间科学技术, 2003,10(5):16-32. LUO Y Z, TANG G J, LIANG Y G, et al. Integrated optimization design for trajectory/system parameter of low earth orbit launch vehicle[J]. Chinese Space Science and Technology, 2003, 10(5):16-32(in Chinese).
[5] 罗亚中, 唐国金, 梁彦刚. 基于分解策略的SSO发射轨道遗传全局优化设计[J]. 航空学报, 2004, 25(5):443-446. LUO Y Z, TANG G J, LIANG Y G. Decomposition approach and genetic algorithm based global optimization of launch trajectory for sun synchronous orbit[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):443-446(in Chinese).
[6] 罗亚中, 唐国金, 梁彦刚, 等. GTO发射轨道的两级分解全局优化设计策略[J]. 中国空间科学技术, 2004, 24(4):36-46. LUO Y Z, TANG G J, LIANG Y G, et al. Bilevel decomposition based global optimization approach for launch trajectory of GTO launchers[J]. Chinese Space Science and Technology, 2004,24(4):36-46(in Chinese).
[7] 杨希祥, 江振宇, 张卫华. 小型运载火箭大气层飞行段飞行程序设计研究[J]. 飞行力学, 2010, 28(4):68-72. YANG X X, JIANG Z Y, ZHANG W H. Flight program design for small launch vehicle in atmosphere flight stage[J]. Flight Dynamics, 2010, 28(4):68-72(in Chinese).
[8] BATTIN R H. An introduction to the mathematics and method of astrodynamics[M]. New York:AIAA Education Series, 1987:408-418.
[9] BATTIN R H, FILL T J. Extension of gauss method for the solution of Kepler's equation[J]. Journal of Guidance, Control and Dynamics, 1979, 2(5-6):190-195.
[10] BATTIN R H.A scrapbook of beautiful equations and great ideas[C]//Astrodynamics Symposium, 2000:423-433.
[11] 郑莉莉. 连续推力作用下的机动轨道设计与优化[D]. 西安:西北工业大学, 2011:15-43. ZHENG L L. Orbit design and optimization for spacecraft maneuver under continuous thrust[D]. Xi'an:Northwestern Polytechnical University, 2011:15-43(in Chinese).
[12] TAHERI E, ABDELKHALIK O. Shaped-based approximation of constrained low-thrust space trajectory using Fourier series[J]. Journal of Spacecraft and Rockets, 2012, 49(3):535-546.