流体力学与飞行力学

飞行器气动/结构多学科延迟耦合伴随系统数值研究

  • 黄江涛 ,
  • 周铸 ,
  • 刘刚 ,
  • 高正红 ,
  • 黄勇 ,
  • 王运涛
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 西北工业大学 翼型叶栅空气动力学国防科技重点实验室, 西安 710072

收稿日期: 2017-09-07

  修回日期: 2018-02-06

  网络出版日期: 2017-11-29

基金资助

国家自然科学基金(11402288);国家重点研究发展计划(2016YFB0200704)

Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft

  • HUANG Jiangtao ,
  • ZHOU Zhu ,
  • LIU Gang ,
  • GAO Zhenghong ,
  • HUANG Yong ,
  • WANG Yuntao
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-09-07

  Revised date: 2018-02-06

  Online published: 2017-11-29

Supported by

National Natural Science Foundation of China (11402288); National Key Research and Development Program of China (2016YFB0200704)

摘要

基于自主研发的大规模并行结构化网格雷诺平均Navier-Stokes(RANS)求解器PMB3D以及流固耦合代码FSC3D建立了飞行器静气动弹性数值模拟技术,进一步基于并行化伴随方程求解器PADJ3D,开展了Navier-Stokes方程与结构动力学方程耦合离散伴随的推导、构造。对各个学科伴随变量进行延迟处理,进行耦合伴随系统的解耦,学科之间的影响通过右端强迫项的形式在方程中体现,通过松耦合形式进行各个学科方程右端项数据传递,各个学科的伴随方程一定程度上能够相对独立,进一步实现了基于LDLT方法的结构伴随方程的高效求解;对典型客机柔性机翼进行梯度信息求解,并与考虑气动弹性影响的差分结果进行对比分析。数值模拟结果表明,延迟耦合伴随形式更有利于保持原有程序结构形式以及程序模块化,梯度计算精度完全满足优化设计需要,能够为柔性机翼飞行器气动/结构多学科优化设计提供研究基础与技术平台。

本文引用格式

黄江涛 , 周铸 , 刘刚 , 高正红 , 黄勇 , 王运涛 . 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018 , 39(5) : 121731 -121731 . DOI: 10.7527/S1000-6893.2017.21731

Abstract

Based on the large-scale parallelized structured grid Reynolds-Averaged Navier-Stokes (RANS)solver PMB3D and the fluid-solid coupling FSC3D, a simulation technology for aircraft aeroelasticity is established. Derivation and construction of the aero-structural coupled adjoint system are carried out by using the parallel adjoint equation solver PADJ3D. The decoupling of the coupled adjoint system is realized by delaying the adjoint variables of each discipline. The influence of various disciplines is represented by the form of the forcing term at the right end of the equation. The cross derivatives of each discipline equation are transferred through a loosely coupled form, the adjoint equations for various disciplines can be solved independently,and the efficient solution of the structure adjoint equation based on LDLT method is further realized. The gradient information of a typical flexible wing of the passenger plane is solved and compared with differential results taking aeroelastic effects into account. The numerical results and the lagged adjoint expression show that the lagged coupling is more conducive to preserving the original program structure and the modularization of the program, the accuracy of the gradient calculation fully meets the requirements of aerodynamic optimization design. The simulation technology proposed can provide research basis and technical support for aero-structural multidisciplinary optimization design of flexible wing.

参考文献

[1] MARTINS J R R A. A coupled-adjoint method for high-fidelity. Aero-structural optimization[M]. Stanford:Stanford University Press, 2002.
[2] MADER C A, KENWAY G K W, MARTINS J R R A. Towards high-fidelity aerostructural optimization using a coupled adjoint approach[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2008.
[3] KENWAY G K W, MARTINS J R R A. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration[J]. Journal of Aircraft, 2014, 51(1):144-160.
[4] LEOVIRIYAKIT K, JAMESON A. Case studies in aero-structural wing planform and section optimization:AIAA-2004-5372[R]. Reston, VA:AIAA, 2004.
[5] ABU-ZURAYK M, BREZILLON J. Shape optimization using the aero-structural coupled adjoint approach for viscous flows[C]//Evolutionary and Deterministic Methods For Design, Optimization and Control, 2011.
[6] MARCELET M, PETER J, CARRIER G. Sensitivity analysis of a strongly coupled aero-structural system using direct and adjoint methods:AIAA-2008-5863[R]. Reston, VA:AIAA, 2008.
[7] GHAZLANE I, CARRIER G, DUMONT A. Aerostructural adjoint method for flexible wing optimization:AIAA-2012-1924[R]. Reston, VA:AIAA, 2012.
[8] 左英桃, 高正红, 詹浩.基于N-S方程和离散共轭方法的气动设计方法研究[J].空气动力学学报, 2009, 27(1):67-72. ZUO Y T, GAO Z H, ZHAN H. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2009, 27(1):67-72(in Chinese).
[9] 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J]. 航空学报, 2007, 28(2):281-285. XIONG J T, QIAO Z D, YANG X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):281-285(in Chinese).
[10] 屈崑, 李记超, 蔡晋生. CFD数学模型的线性化方法及其应用[J]. 航空学报, 2015, 36(10):3218-3227. QU K, LI J C, CAI J S. Method of linearizing computational fluid dynamics model and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3218-3227(in Chinese).
[11] 张朝磊, 厉海涛, 丰镇平. 基于离散伴随方法的透平叶栅气动优化[J]. 工程热物理学报, 2012, 33(4):47-50. ZHANG C L, LI H T, FENG Z P. Aerodynamic opti-mization design of turbomachinery cascade based on discrete adjoint method[J]. Journal of Engineering Thermophysics, 2012, 33(4):47-50(in Chinese).
[12] 高宜胜, 伍贻兆, 夏健. 基于非结构网格离散型伴随方法的翼型优化[J]. 空气动力学学报, 2013, 31(2):244-249. GAO Y S, WU Y Z, XIA J. A discrete adjoint-based approach for airfoil optimization on unstructured meshes[J]. Acta Aerodynamica Sinica, 2013, 31(2):244-249(in Chinese).
[13] 李彬, 邓有奇, 唐静, 等. 基于三维非结构混合网格的离散伴随优化方法[J]. 航空学报, 2014, 35(3):674-686. LI B, DENG Y Q, TANG J, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese).
[14] 张科施, 韩忠华, 李为吉, 等. 一种考虑气动弹性的运输机机翼多学科优化方法[J]. 空气动力学学报, 2008, 26(1):1-7. ZHANG K S, HAN Z H, LI W J, et al. A method of coupled aerodynamic/structural integration optimization for transport-wing design[J]. Acta Aerodynamica Sinica, 2008, 26(1):1-7(in Chinese).
[15] 刘刚, 肖中云, 王建涛, 等. 考虑约束的机载导弹导轨发射数值模拟[J]. 空气动力学学报, 2015, 33(2):192-197. LIU G, XIAO Z Y, WANG J T, et al. Numerical simulation of missile air-launching process under rail slideway constraints[J]. Acta Aerodynamica Sinica, 2015, 33(2):192-197(in Chinese).
[16] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese).
[17] ALLEN C B, RENDALL T C S. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions:AIAA-2007-3804[R]. Reston, VA:AIAA, 2007.
[18] 覃华, 徐燕子. 用LDLT并行分解优化大规模SVM的训练效率[J]. 计算机工程与应用, 2011, 47(12):200-212. QIN H, XU Y Z. Improving SVM's learning efficiency by using matrix LDLT parallel decomposition[J]. Computer Engineering and Applications, 2011, 47(12):200-212(in Chinese).
[19] SPEKREIJSE S P, BOERSTOEL J W. An algorithm to check the topological validity of multi-block domain decompositions[C]//Proceedings 6th International Conference on Numerical Grid Generation in Computational Field Simulations, 1998.
[20] BALLMANN J, BOUCKE A, CHEN B, et al. Aero-structural wind tunnel experiments with elastic wing models at high reynolds numbers (HIRENASD-ASDMAD):AIAA-2011-0882[R]. Reston, VA:AIAA, 2011.
文章导航

/