流体力学与飞行力学

基于双eN方法的翼身组合体流动转捩自动判断

  • 朱震 ,
  • 宋文萍 ,
  • 韩忠华
展开
  • 西北工业大学 航空学院 翼型叶栅空气动力学国家级重点实验室, 西安 710072

收稿日期: 2017-08-30

  修回日期: 2017-11-20

  网络出版日期: 2017-11-18

基金资助

航空科学基金(2016ZA53);CFD前沿技术项目(2015-F-016)

Automatic transition prediction for wing-body configurations using dual eN method

  • ZHU Zhen ,
  • SONG Wenping ,
  • HAN Zhonghua
Expand
  • National Key Laboratory of Science and Technology on Aerodynamic Design and Research, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-08-30

  Revised date: 2017-11-20

  Online published: 2017-11-18

Supported by

Aeronautical Science Foundation of China (2016ZA53); ATCFD Project (2015-F-016)

摘要

发展翼身组合体复杂外形流动转捩自动判断方法,对高亚声速民机自然层流(NLF)机翼设计具有重要意义。使用多块结构化网格和三维雷诺平均Navier-Stokes(RANS)方程求解器,耦合边界层方程求解和基于线性稳定性理论(LST)的完全双eN方法,发展了一套可同时计及Tollmien-Schlichting波和横流不稳定性扰动诱导转捩的翼身组合体流动转捩自动判断方法。对DLR-F4翼身组合体绕流进行了转捩自动判断,将得到的转捩位置与试验结果进行比较,验证了所发展方法的正确性。使用上述方法对配置自然层流机翼的中短程民机翼身组合体外形进行了数值模拟,并将结果与单独机翼的转捩位置进行了对比,结果表明机身三维位移效应增强了自然层流后掠机翼边界层的横流不稳定性强度,导致翼根转捩位置提前至前缘区。

本文引用格式

朱震 , 宋文萍 , 韩忠华 . 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018 , 39(2) : 121707 -121707 . DOI: 10.7527/S1000-6893.2017.21707

Abstract

Development of the automatic transition prediction method for complex wing-body configurations is of great importance for the design of the Natural Laminar Flow (NLF) wing of high-subsonic civil transport aircraft. An automatic transition prediction method for wing-body configurations is developed using the structured multi-block grid three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solver coupled with the fully dual eN method based on the Linear Stability Theory (LST). The method proposed can predict the transition induced by Tollmien-Schlichting instability and cross-flow instability simultaneously. Transition prediction of the flow around the DLR-F4 wing-body configuration is carried out, and a comparison of the transition locations given by the numerical method and by the experiment validates the accuracy of the proposed method. The flow around the wing-body configuration of short and medium range civil transport aircraft using the NLF wing is simulated, and the simulation results are compared with the transition locations of the individual wing. The comparison result shows that the cross-flow instability of the NLF aft-swept wing boundary layer is increased due to the three-dimensional displacement of the fuselage, leading to early transition onset in the leading edge region of the wing root.

参考文献

[1] COLLIER F, THOMAS R, BURLEY C, et al. Environmentally responsible aviation-Real solutions for environmental challenges facing aviation[C]//27th Congress of the International Council of the Aeronautical Sciences 2010. Stockholm:ICAS Secretariat, 2010:300-315.[2] DARECK M, EDELSTENN C, ENDER T, et al. Flightpath 2050 Europe's vision for aviation[R]. Belgium:Advisory Council for Aeronautics Research in Europe, 2011.[3] HEPPERLE M. MDO of forward swept wings[C]//KATnet Ⅱ Multi-Disciplinary Design and Configuration Optimization Workshop, 2008:28-30.[4] ARNAL D, COUSTOLS E, JUILLEN J C. Experimental and theoretical study of transition phenomena on an infinite swept wing[J]. La Recherche Aerospatiale (English Edition), 1984, 1984(4):39-54.[5] DRELA M. Newton solution of coupled viscous/inviscid multielement airfoil flows[C]//21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1990:1470.[6] CEBECI T, STEWARTSON K. On stability and transition in three-dimensional flows[J]. AIAA Journal, 1980, 18(4):398-405.[7] MALIK M R. COSAL:A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers:NASA-CR-165925[R]. Washington,D.C.:NASA, 1982.[8] MACK L M. Stability of three-dimensional boundary layers on swept wings at transonic speeds[C]//IUTAM. Symposium Transsonicum Ⅲ. Berlin Heidelberg:Springer, 1989:209-223.[9] ARNAL D. Transition prediction in transonic flow[C]//IUTAM. Symposium Transsonicum Ⅲ. Berlin Heidelberg:Springer, 1989:253-262.[10] ARNAL D, CASALIS G, JUILLEN J C. Experimental and theoretical analysis of natural transition on "infinite" swept wing[C]//IUTAM. Laminar-Turbulent Transition. Berlin Heidelberg:Springer, 1990:311-325.[11] RADESPIEL R, GRAAGE K, BRODERSEN O. Transition predictions using Reynolds-averaged Navier-Stokes and linear stability analysis methods:AIAA-1991-1641[R]. Reston, VA:AIAA, 1991.[12] CASALIS G, ARNAL D. ELFIN Ⅱ subtask 2.3:Database method-Development and validation of the simplified method for pure cross-flow instability at low speed:ELFIN Ⅱ-145[R]. Toulouse:ONERA-CERT, 1996.[13] STOCK H W, HAASE W. Feasibility study of eN transition prediction in Navier-Stokes methods for airfoils[J]. AIAA Journal, 1999, 37(10):1187-1196.[14] NEBEL C, RADESPIEL R, WOLF T. Transition prediction for 3D flows using a Reynolds-averaged Navier-Stokes code and N-factor methods:AIAA-2003-3593[R]. Reston, VA:AIAA, 2003.[15] KRUMBEIN A. Automatic transition prediction and application to high-lift multi-element configurations:AIAA-2004-2543[R]. Reston, VA:AIAA, 2004.[16] STOCK H W. Infinite swept wing Navier-Stokes computations with eN transition prediction[J]. AIAA Journal, 2005, 43(6):1221-1229.[17] KRUMBEIN A. Automatic transition prediction and application to 3D wing configurations:AIAA-2006-0914[R]. Reston, VA:AIAA, 2006.[18] CLIQUET J, HOUDEVILLE R, ARNAL D. Application of laminar-turbulent transition criteria in Navier-Stokes computations:AIAA-2007-0515[R]. Reston, VA:AIAA, 2007.[19] KRUMBEIN A. eN transition prediction for 3D wing configurations using database methods and a local, linear stability code[J]. Aerospace Science and Technology, 2008, 12(8):592-598.[20] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684.[21] PERRAUD J, CLIQUET J, HOUDEVILLE R, et al. Transport aircraft three-dimensional high-lift wing numerical transition prediction[J]. Journal of Aircraft, 2008, 45(5):1554-1563.[22] KRIMMELBEIN N, RADESPIEL R, NEBEL C. Numerical aspects of transition prediction for three-dimensional configurations:AIAA-2005-4764[R]. Reston, VA:AIAA, 2005.[23] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction:AIAA-2009-0897[R]. Reston, VA:AIAA, 2009.[24] GRABE C, SHENGYANG N, KRUMBEIN A. Transition transport modeling for the prediction of crossflow transition:AIAA-2016-3572[R]. Reston, VA:AIAA, 2016.[25] 张坤, 宋文萍. eN方法在无限展长后掠翼边界层转捩判断中的初步应用[J]. 西北工业大学学报, 2011, 29(1):142-147. ZHANG K, SONG W P. Application of the full eN transition method to the infinite swept-wing's transition prediction[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):142-147(in Chinese).[26] 左岁寒, 杨永, 李栋. 基于线性抛物化稳定性方程的后掠翼边界层内横流稳定性研究[J]. 计算物理, 2010, 27(5):665-670. ZUO S H, YANG Y, LI D. Investigation on cross-flow instabilities in swept-wing boundary layers with linear parabolized stability equations[J]. Chinese Journal of Computational Physics, 2010, 27(5):665-670(in Chinese).[27] 孙朋朋, 黄章峰. 后掠角对后掠机翼边界层稳定性及转捩的影响[J]. 北京航空航天大学学报, 2015, 41(7):1313-1321. SUN P P, HUANG Z F. Effect of sweep angle on stability and transition in a swept-wing boundary layer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7):1313-1321(in Chinese).[28] 靖振荣, 孙朋朋, 黄章峰. 小攻角对后掠机翼边界层稳定性及转捩的影响[J]. 北京航空航天大学学报, 2015, 41(11):2177-2183. JING Z R, SUN P P, HUANG Z F. Effect of attack angle on stability and transition in a swept-wing boundary layer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):2177-2183(in Chinese).[29] 黄章峰, 逯学志, 于高通. 机翼边界层的横流稳定性分析和转捩预测[J]. 空气动力学学报, 2014, 32(1):14-20. HUANG Z F, LU X Z, YU G T. Cross-flow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20(in Chinese).[30] HAN Z H, CHEN J, ZHU Z, et al. Aerodynamic design of transonic natural-laminar-flow (NLF) wing via surrogate-based global optimization:AIAA-2016-2041[R]. Reston, VA:AIAA, 2016.[31] 徐家宽, 白俊强, 乔磊, 等. 后掠翼边界层横流不稳定转捩预测模型[J]. 航空动力学报, 2015, 30(4):927-935. XU J K, BAI J Q, QIAO L, et al. Prediction model of cross-flow instability transition in swept wing boundary layers[J]. Journal of Aerospace Power, 2015, 30(4):927-935(in Chinese).[32] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese).[33] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese).[34] 戚琼, 韩庆. 基于Spalart-Allmaras-γ-Reθt转捩模型的横流不稳定性转捩预测方法[J]. 气体物理, 2016, 1(3):19-24. QI Q, HAN Q. Prediction method of cross-flow instabilities-induced transition based on Spalart-Allmaras-γ-Reθt transition model[J]. Physics of Gases, 2016, 1(3):19-24(in Chinese).[35] 鞠胜军, 阎超, 叶志飞. γ-Reθt-CF转捩模型在Spalart-Allmaras湍流模型中的推广及验证[J]. 航空学报, 2017, 38(4):120383. JU S J, YAN C, YE Z F. Genevalization and validation of γ-Reθt-CF transition modeling in combination with Spalart-Allmaras turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120383(in Chinese).[36] KRUMBEIN A, KRIMMELBEIN N, GRABE C. Streamline-based transition prediction techniques in an unstructured computational fluid dynamics code[J]. AIAA Journal, 2017, 55(5):1548-1564.[37] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory[M]. Long Beach:Douglas Aircraft Company, 1956.[38] INGEN J L V. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-74[R]. Delft:Delft University of Technology, 1956.[39] SONG W P, ZHU Z, YANG H, et al. Laminar flow wing's optimization design by RANS solver with automatic transition prediction[C]//28th Congress of the International Council of the Aeronautical Sciences 2012. Stockholm:ICAS Secretariat, 2012:716-725.[40] FEY U, EGAMI Y, ENGLER R. High Reynolds number transition detection by means of temperature sensitive paint:AIAA-2006-0514[R]. Reston, VA:AIAA, 2006.[41] HAN Z H, DENG J, LIU J, et al. Design of laminar supercritical airfoils based on Navier-Stokes equations[C]//28th Congress of the International Council of the Aeronautical Sciences 2012. Stockholm:ICAS Secretariat, 2012:706-715.[42] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese).
文章导航

/