流体力学与飞行力学

煤油液滴高压蒸发特性

  • 李鹏飞 ,
  • 雷凡培 ,
  • 王凯 ,
  • 周立新
展开
  • 1. 西安航天动力研究所, 西安 710100;
    2. 液体火箭发动机技术重点实验室, 西安 710100;
    3. 中国航天科技集团公司, 北京 100037

收稿日期: 2017-09-25

  修回日期: 2017-11-17

  网络出版日期: 2017-11-17

Evaporation characteristics of kerosene droplet under high-pressure conditions

  • LI Pengfei ,
  • LEI Fanpei ,
  • WANG Kai ,
  • ZHOU Lixin
Expand
  • 1. Xi'an Aerospace Propulsion Institute, Xi'an 710100, China;
    2. Science and Technology Laboratory on Liquid Rocket Engine, Xi'an 710100, China;
    3. China Aerospace Science and Technology Corporation, Beijing 100037, China

Received date: 2017-09-25

  Revised date: 2017-11-17

  Online published: 2017-11-17

摘要

采用真实流体模型描述高压下流体热物理性质的非理想性,并采用状态方程(EoS)法计算多组分高压气-液相平衡及环境气体溶解性,在此基础上建立包含亚临界和超临界两种不同机制的瞬态液滴高压蒸发模型。针对中国新一代高压补燃液氧/煤油发动机,详细研究了煤油液滴在超临界环境下的高压蒸发特性及各因素影响机理。结果表明:高压环境会显著加快液滴温升速率,但弱超临界环境下仍然为相平衡控制的亚临界蒸发状态;只有强超临界环境下才较容易发生扩散控制的超临界蒸发状态。在高压、高温环境下,忽略气相溶解性将导致液滴蒸发速率明显偏小。针对弱超临界环境,温度升高会使液滴蒸发速率单调增加;压力升高则在低温下降低蒸发速率,而在高温下加快蒸发速率。针对强超临界环境,温度升高只提升初始亚临界蒸发阶段的蒸发速率,而超临界蒸发阶段的蒸发速率与环境温度无关;压力升高则同样会提升初始亚临界蒸发阶段的蒸发速率,但会降低超临界蒸发阶段的蒸发速率,此时的总蒸发寿命随压力升高小幅下降。

本文引用格式

李鹏飞 , 雷凡培 , 王凯 , 周立新 . 煤油液滴高压蒸发特性[J]. 航空学报, 2018 , 39(3) : 121764 -121764 . DOI: 10.7527/S1000-6893.2017.21764

Abstract

The transient droplet evaporation model including both sub-and super-critical mechanisms under high-pressure conditions was established on the basis of accurate prediction of the non-ideality of thermo-physical properties of the fluid using real-fluid models, as well as the high-pressure vapor liquid phase equilibrium of multi-components and the solubility of ambient gas into liquid phase using Equation of State (EoS) method. The evaporation characteristics of the kerosene droplet and the effect mechanisms of various factors on which under supercritical environments related to high-pressure staged-combustion liquid oxygen/kerosene rocket engine were studied. The results indicate that the subcritical evaporation state controlled by phase equilibrium was still behaved under weakly supercritical environment although the rise rate of droplet temperature was clearly enhanced under high-pressure conditions, whereas supercritical evaporation state controlled by diffusion appeared only under highly supercritical environment. The evaporation rate would be underestimated with ignoring the solubility of ambient gas under high-pressure and high-temperature conditions. Under the weakly supercritical environments, the rising ambient temperature would accelerate monotonically evaporation rate; the rising ambient pressure would suppress the evaporation rate under lower ambient temperature, whereas accelerate it under higher ambient temperature. In contrast, under the highly supercritical environments, the rising ambient temperature would accelerate the evaporation rate of the initial subcritical evaporation stage, whereas not affect the evaporation rate of the supercritical evaporation stage; the rising ambient pressure would also accelerate the evaporation rate of the initial subcritical evaporation stage, whereas suppress the evaporation rate of the supercritical evaporation stage, and the total lifetime of droplet would decrease slightly with the increase of ambient pressure.

参考文献

[1] YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2000, 28(1):925-942.
[2] HSIAO G C, MENG H, YANG V. Pressure-coupled vaporization response of n-pentane fuel droplet at sub-critical and super-critical conditions[J]. Proceedings of the Combustion Institute, 2011, 33(2):1997-2003.
[3] YANG V, HSIEH K C, SHUEN J S. Supercritical droplet combustion and related transport phenomena:AIAA-1993-0812[R]. Reston, VA:AIAA, 1993.
[4] GIVLER S D, ABRAHAM J. Supercritical droplet vaporization and combustion studies[J]. Progress in Energy and Combustion Science, 1996, 22(1):1-28.
[5] HIROYASU H, KADOTA T, SENDA T, et al. Evaporation of a single droplet at elevated pressures and temperatures:Part 1, experimental study[J]. Transactions of the Japan Society of Mechanical Engineers, 1974, 40(339):3147-3154.
[6] LITCHFORD R J, PARIGGER C, JENG S M. Supercritical droplet gasification experiments with forced convection:AIAA-1992-3118[R]. Reston, VA:AIAA, 1992.
[7] SATO J. Studies on droplet evaporation and combustion in high pressures:AIAA-1993-0813[R]. Reston, VA:AIAA, 1993.
[8] NOMURA H, UJⅡE Y, RATH H J, et al. Experimental study on high-pressure droplet evaporation using microgravity conditions[C]//Twenty-Sixth Symposium (International) on Combustion. Pittsburgh, PA:The Combustion Institute, 1996:1267-1273.
[9] GHASSEMI H, BAEK S W, KHAN Q S. Experimental study on binary droplet evaporation at elevated pressure and temperature:AIAA-2005-0353[R]. Reston, VA:AIAA, 2005.
[10] GHASSEMI H, BAEK S W, KHAN Q S. Experimental study on evaporation of kerosene droplets at elevated pressures and temperature[J]. Combustion Science and Technology, 2006, 178(9):1669-1684.
[11] 周舟, 范玮, 靳乐, 等. 单个RP-3航空煤油液滴的超临界蒸发实验研究[J]. 推进技术, 2016, 37(8):1422-1430. ZHOU Z, FAN W, JIN L, et al. Experimental investigation on supercritical evaporation of RP-3 aviation kerosene droplet[J]. Journal of Propulsion Technology, 2016, 37(8):1422-1430(in Chinese).
[12] 靳乐, 范玮, 周舟, 等. 液滴初始温度对RP-3航空煤油超临界蒸发特性的影响[J]. 燃烧科学与技术, 2016, 22(3):269-275. JIN L, FAN W, ZHOU Z, et al. Influence of initial temperature of droplet on supercritical evaporation characteristics of RP-3 aviation kerosene[J]. Journal of Combustion Science and Technology, 2016, 22(3):269-275(in Chinese).
[13] KADOTA T, HIROYASU H. Evaporation of a single droplet at elevated pressures and temperatures:2nd report, theoretical study[J]. Bulletin of JSME, 1976, 19(138):1515-1521.
[14] 庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M]. 长沙:国防科技大学出版社,1995:96-105. ZHUANG F C. Theory, model and application of spray combustion of liquid rocket engine[M]. Changsha:National University of Defense Technology Press, 1995:96-105(in Chinese).
[15] KITANO T, NISHIO J, KUROSE R, et al. Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation[J]. Combustion and Flame, 2014, 161(2):551-564.
[16] EBRAHIMIAN V, HABCHI C. Towards a predictive evaporation model for multi-component hydrocarbon droplets at all pressure conditions[J]. International Journal of Heat and Mass Transfer, 2011, 54(15-16):3552-3565.
[17] LITCHFORD R J, JENG S M. LOX vaporization in high-pressure, hydrogen-rich gas:AIAA-1990-2191[R]. Reston, VA:AIAA, 1990.
[18] SAZHIN S S, ABDELGHAFFAR W A, SAZHINA E M, et al. Models for droplet transient heating:Effects on droplet evaporation, ignition, and break-up[J]. International Journal of Thermal Sciences,2005, 44(7):610-622.
[19] MENG H, YANG V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics, 2003, 189(1):277-304.
[20] LAFON P, MENG H, YANG V, et al. Vaporization of liquid oxygen (LOX) droplets in hydrogen and water environments under sub-and super-critical conditions[J]. Combustion Science and Technology, 2008, 180(1):1-26.
[21] BIROUK M, ABOU AL-SOOD M M. Droplet evaporation in a turbulent high-pressure freestream-A numerical study[J]. International Journal of Thermal Sciences, 2010, 49(2):264-271.
[22] 李云清, 王宏楠, 陈威. 亚临界和超临界压力下燃料液滴的蒸发特性[J]. 燃烧科学与技术, 2010, 16(4):287-294. LI Y Q,WANG H N,CHEN W. Fuel droplet evaporation in sub-critical and super-critical pressure environments[J]. Journal of Combustion Science and Technology, 2010, 16(4):287-294(in Chinese).
[23] 何博, 肖强, 聂万胜, 等. 燃烧室高压环境下喷雾液滴非稳态蒸发数值研究[J]. 装备指挥技术学院学报, 2011, 22(4):55-60. HE B, XIAO Q, NIE W S, et al. Numerical research on the unsteady evaporation of spray droplet at the high pressure ambient combustion[J]. Journal of the Academy of Equipment Command & Technology, 2011, 22(4):55-60(in Chinese).
[24] SAZHIN S S. Advanced models of fuel droplet heating and evaporation[J]. Progress in Energy and Combustion Science, 2006, 32(2):162-214.
[25] POLING B E, PRAUSNITZ J M, O'CONNELL J P. 气液物性估算手册[M]. 5版. 赵红玲, 王凤坤, 陈圣坤, 等, 译. 北京:化学工业出版社, 2006:85-86, 357-360, 415-420, 449-455. POLING B E, PRAUSNITZ J M, O'CONNELL J P. The properties of gases and liquids[M]. 5th ed. ZHAO H L, WANG F K, CHEN S K, et al., translated. Beijing:Chemical Industry Press, 2006:85-86, 357-360, 415-420, 449-455(in Chinese).
[26] 王小妹, 郭天民. 氮-烃体系高压相态行为的研究[J]. 石油学报(石油加工), 2001, 17(3):40-45. WANG X M, GUO T M. A study on the high-pressure phase behavior of nitrogen-hydrocarbon systems[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2001, 17(3):40-45(in Chinese).
[27] GARCÍA-CÓRDOVA T, JUSTO-GARCÍA D N, GARCÍA-FLORES B E, et al. Vapor-liquid equilibrium data for the nitrogen + dodecane system at temperatures from (344 to 593) K and at pressures up to 60 MPa[J]. Journal of Chemical & Engineering Data, 2011, 56(4):1555-1564.
文章导航

/