流体力学与飞行力学

推力矢量对飞机大迎角动态气动特性的影响

  • 汤伟 ,
  • 黄勇 ,
  • 傅澔
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心 低速空气动力研究所, 绵阳 621000

收稿日期: 2017-08-04

  修回日期: 2017-11-03

  网络出版日期: 2017-11-03

Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack

  • TANG Wei ,
  • HUANG Yong ,
  • FU Hao
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-08-04

  Revised date: 2017-11-03

  Online published: 2017-11-03

摘要

推力矢量是提高战斗机大迎角动态气动特性,提升其过失速机动能力和飞行品质的重要手段。新一代战斗机的高机动性要求也使气动和推力矢量的融合控制研究日益重要。针对中国空气动力研究与发展中心∅3.2 m开口低速风洞,研制了喷流模拟器和通气动态试验装置,建立了带推力矢量的大迎角动态试验技术。开展了不同减缩频率、不同落压比、不同喷管偏角时的大迎角俯仰振荡运动特性试验研究。结果表明:与无喷流试验相比,带喷流时模型的动态特性均随着落压比和喷管偏角的变化呈现规律性的变化;力和力矩系数形成的迟滞曲线面积随着落压比和偏角的增加而增加;减缩频率的变化对模型的动态特性影响小于无喷流时的影响。总的来说,推力矢量的影响未改变模型大迎角动态特性的基本规律,但是随着推力矢量角度和大小的变化,有规律地改变了模型动态气动力和力矩的变化幅度。

本文引用格式

汤伟 , 黄勇 , 傅澔 . 推力矢量对飞机大迎角动态气动特性的影响[J]. 航空学报, 2018 , 39(4) : 121648 -121648 . DOI: 10.7527/S1000-6893.2017.21648

Abstract

The influence of thrust vector on aerodynamic characteristics at high angles of attack is an important part of improving the dynamic performance of aircraft. The high maneuverability of the new generation fighter also makes the fusion control research of aerodynamic characteristics and thrust vector more and more important. In the ∅3.2 m low speed wind tunnel of China Aerodynamics Research and Development Center, a dynamic test technique for thrust vector at large angle of attack is developed by means of a jet simulator and a ventilation dynamic test device. Experimental research on high angle of attack pitching oscillation characteristics with different reduction frequencies, pressure drop ratios and nozzle deflection angles is carried out. The results show that compared with the non-jet test, the dynamic characteristics of the model with the jet flow changing regularly along with the change of the pressure drop ratio and the nozzle deflection angle. The hysteresis curve area formed by force and moment coefficients increases with the increase of the pressure drop ratio and the deflection angle. The influence of the reduced frequency on the dynamic characteristics of the model is less than that without the jet flow. In general, thrust vector does not change the basic rules of dynamic characteristics at high angle of attack, but with the change of angle and force of thrust vector, thrust vector also regularly increases the change magnitude of the dynamic aerodynamic force and moment.

参考文献

[1] 史志伟, 范本根, 吴根兴. 飞机大迎角俯仰运动下的横侧向气动特性及被动控制[J]. 实验力学, 2009, 24(5):439-444. SHI Z W, FAN B G, WU G X. Lateral-direction aerodynamic characteristics and forebody strake control of an aircraft undergoing pitching oscillation on high attack angle[J]. Journal of Experimental Mechanics, 2009, 24(5):439-444(in Chinese).
[2] 胡朝江. 飞机纵向飞行品质对大迎角气动导数的敏感性研究[J]. 西北工业大学学报, 2000, 18(3):442-445. HU C J. On the sensitivity of aircraft longitudinal flying qualities to aerodynamic derivatives at high angle of attack[J]. Journal of Northwestern Polytechnical University, 2000, 18(3):442-445(in Chinese).
[3] 范晶晶, 阎超, 李跃军. 飞行器大迎角下俯仰静、动导数的数值计算[J]. 航空学报, 2009, 30(10):1846-1850. FAN J J, YAN C, LI Y J. Computation of vehicle pitching static and dynamic derivatives at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1846-1850(in Chinese).
[4] 黄达, 李志强, 吴根兴.飞机平尾偏转对大迎角动态气动特性的影响[J]. 航空学报, 2001, 22(3):198-201. HUANG D, LI Z Q, WU G X. Effects of tail-plane turn on the unsteady aerodynamic of the aircraft pitching in very large amplitude[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(3):198-201(in Chinese).
[5] 孙海生, 张海酉, 刘志涛. 大迎角非定常气动力建模方法研究[J]. 空气动力学学报, 2011, 29(6):733-737. SUN H S, ZHANG H Y, LIU Z T. Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sinica, 2011, 29(6):733-737(in Chinese).
[6] 姜裕标, 黄勇, 孙海生, 等. 展向吹气对非定常气动特性影响试验研究[J]. 流体力学实验与测量, 2004, 18(3):50-54. JIANG Y B, HUANG Y, SUN H S, et al. An investigation on the effect of spanwise blowing on unsteady aerodynamic characteristics[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(3):50-54(in Chinese).
[7] 胡孟权. 推力矢量飞机非线性飞行控制率设计研究[D]. 西安:西北工业大学, 2002. HU M Q. Research on nonlinear flight control law design of aircraft with vectoring thrust[D]. Xi'an:Northwestern Polytechnical University, 2002(in Chinese).
[8] 王海涛, 万小朋, 侯明善. 推力矢量对飞机机动性能的影响[J]. 弹箭与制导学报, 2005, 25(4):450-452. WANG H T, WAN X P, HOU M S. The affection of thrust vector on aircraft's maneuver performance[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4):450-452(in Chinese).
[9] 高彦玺, 王衍洋, 金长江. 推力矢量控制与飞机过失速机动仿真研究[J]. 飞行力学, 1997, 15(1):23-29. GAO Y X, WANG Y Y, JIN C J. A study on the thrust vectoring control and aircraft's post stall maneuver[J]. Flight Dynamics, 1997, 15(1):23-29(in Chinese).
[10] 艾尔, 王衍洋, 屈香菊. 气动/推力矢量控制面融合方式研究[J]. 飞行力学, 2005, 23(4):20-24. AI E, WANG Y Y, QU X J. An analysis on the combination of aero/thrust vector control surfaces[J]. Flight Dynamics, 2005, 23(4):20-24(in Chinese).
[11] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社, 2010:50-57. LI Z F. Special wind tunnel test technology[M]. Beijing:Aviaton Industrial Publishing House, 2010:50-57(in Chinese).
[12] 李其畅, 赵忠良, 杨海泳, 等. 模型大迎角高速动态特性与数据精度分析[J]. 航空学报, 2016, 37(8):2594-2602. LI Q C, ZHAO Z L, YANG H Y, et al. Analysis of dynamic performance and test data precision of models with high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2594-2602(in Chinese).
[13] 赵忠良, 李其畅, 余立, 等. SDM标模大迎角动态特性试验研究[J]. 空气动力学学报, 2008, 26(增刊):66-77. ZHAO Z L, LI Q C, YU L, et al. Dynamic test investigation of SDM standard model in high speed wind tunnel[J]. Acta Aerodynamica Sinica, 2008, 26(s):66-77(in Chinese).
[14] 孔鹏, 王克逸, 巫朝君, 等. 大迎角机动进气道试验装置有限元分析与优化[J]. 实验流体力学, 2012, 26(5):79-83. KONG P, WANG K Y, WU C J, et al. Finite element analysis and optimization of the inlet test installation for aircraft with high AOA maneuver[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5):79-83(in Chinese).
[15] 朱俊强, 黄国平, 雷志军. 航空发动机进排气系统气动热力学[M]. 上海:上海交通大学出版社, 2014. ZHU J Q, HUANG G P, LEI Z J. Aerothermodynamics of aeroengine intake and exhaust system[M]. Shanghai:Shanghai Jiao Tong University Press, 2014(in Chinese).
[16] THOMAS M B. Thrust vector behavior of highly integrated asymmetric nozzles for advanced fighter aircraft:AIAA-1998-0948[R]. Reston, VA:AIAA, 1998.
[17] WANG Y K, DENG X Y. Effects of vectoring jet on aerodynamic characteristics of aircraft[J]. Chinese Journal of Aeronautics, 1998, 11(2):2-8.
[18] FRANCIS J C. The effects on propulsion-induced aerodynamic forces of vectoring a partial-span rectangular jet at Mach numbers from 0.4 to 1.2:NASA-TN D-8039[R]. Washington, D.C.:NASA, 1976.
[19] SCOTT C A, FRANCIS J C. Thrust vectoring characteristics of the F-18 high alpha research vehicle at angles of attack from 0° to 70°:AIAA-1992-3095[R]. Reston, VA:AIAA, 1992.
[20] 金钻, 张曙光, 孙金标. 现代战斗机空战能力评估及敏感性分析[J]. 北京航空航天大学学报, 2009, 35(1):82-86. JIN Z, ZHANG S G, SUN J B. Air-combat ability and sensitivity analysis of modern fighter aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1):82-86(in Chinese).
[21] 蒋永, 孙海生, 沈志宏, 等. 非定常大振幅振荡试验数据处理研究[J]. 实验流体力学, 2015, 29(1):97-102. JIANG Y, SUN H S, SHEN Z H, et al. Research on the data processing of unsteady large-amplitude-oscillation experiment[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1):97-102(in Chinese).
文章导航

/