流体力学与飞行力学

基于数值模拟的NSDBD等离子体激励器防冰特性

  • 贾韫泽 ,
  • 桑为民 ,
  • 蔡旸
展开
  • 西北工业大学 航空学院, 西安 710072

收稿日期: 2017-08-07

  修回日期: 2017-10-27

  网络出版日期: 2017-10-27

基金资助

国家自然科学基金(11072201);航空科学基金(2015ZA53007)

Anti-icing property of NSDBD plasma actuator based on numerical simulation

  • JIA Yunze ,
  • SANG Weimin ,
  • CAI Yang
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-08-07

  Revised date: 2017-10-27

  Online published: 2017-10-27

Supported by

National Natural Science Foundation of China (11072201); Aeronautical Science Foundation of China (2015ZA53007)

摘要

飞行器表面在一定气象条件下会产生积冰,积冰会使飞行器气动性能下降,是危害飞行安全的重要因素之一。常见的气热及电热防冰系统已经广泛运用于现有飞行器上。近些年,在纳秒脉冲阻挡介质放电(NSDBD)等离子体激励器的相关研究中发现NSDBD等离子体激励器可对周围流场进行快速加热,考虑到这种热效应可能作为飞机防冰的一种新方式。本文用数值方法对NSDBD等离子体激励器防冰特性开展了研究。首先,建立了基于Messinger模型的积冰模型,对典型积冰条件进行了验证计算;其次,耦合唯象学等离子体模型与非定常雷诺平均Navier-Stokes方程,计算等离子体对空气流场的影响;最后,将NSDBD等离子体激励器布置在NACA0012翼型前缘防冰区,结合积冰模型与唯象学等离子模型,对其防冰特性进行了研究。计算结果表明等离子体加热的热气流会覆盖在翼型表面防冰区。在相同的霜冰条件下,开启等离子体激励器时机翼前缘没有出现积冰,说明等离体子激励器应用于机翼防冰是有效的。针对不同的激励器参数对防冰特性的影响规律进行了研究,总体上防冰效果与峰值电压、激励器频率有关,从防冰效果和能耗方面考量,在给定计算条件下,存在最优电压值和最优激励器频率值。激励器分布方式对防冰特性的影响与其具体流场有关,需要具体分析。

本文引用格式

贾韫泽 , 桑为民 , 蔡旸 . 基于数值模拟的NSDBD等离子体激励器防冰特性[J]. 航空学报, 2018 , 39(4) : 121652 -121652 . DOI: 10.7527/S1000-6893.2017.21652

Abstract

Ice accretion is a common phenomenon in flights. The ice accretion on wings causes weight increase, aero-dynamic performance degradation and control ability difficulties, so the ice protection system is necessary. The hot air anti-ice system and the electro-thermal anti-ice system have been used widely in current planes. In recent years, plasma active flow control has received growing attention. In experiments, the NanoSecond pulse Dielectric Barrier Discharge (NSDBD) plasma actuator is observed to be able to heat the gas quickly. Considering the heating effect, this paper makes a numerical analysis of the anti-icing property of the NSDBD plasma actuator. First, an ice accretion model is developed based on the Messinger model. Second, the influence of the plasma on the air flow field is calculated by using the phenomenological model for the NSDBD plasma actuator and unsteady Reynolds-Averaged Navier-Stokes equations. Thirdly, the NSDBD plasma actuator is placed in the anti-ice area of the leading edge of the NACA0012 airfoil. The phenomenological model for the NSDBD plasma actuator and the ice accretion model are combined to study the anti-icing property of the NSDBD plasma actuator. The result shows that the hot air heated by the plasma can cover the anti-icing area for a long time. The numerical simulation result shows that there is no ice accretion when the plasma actuator is operating in the rime ice condition, demonstrating the effectiveness of the NSBDB plasma actuator used in anti-icing. Then anti-icing properties of the NSDBD plasma actuator with different parameters have also been studied. In general, the peak voltage and pulse frequency have influence on the anti-icing performance of the NSDBD plasma actuator. With respect to energy consumption and anti-icing effect, there exist the optimal peak voltage value and pulse frequency under the given calculation conditions. The arrangement of the plasma actuator also influences the anti-icing property, and should be analyzed specifically.

参考文献

[1] DURST F, MILOIEVIC D, SCHÖNUNG B. Eulerian and lagrangian predictions of particulate two-phase flows:A numerical study[J]. Applied Mathematical Modelling, 1984, 8(2):101-115.
[2] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.
[3] MACARTHUR C D. Numerical simulation of airfoil ice accretion:AIAA-1983-0112[R]. Reston, VA:AIAA, 1983.
[4] AL-KHALIL K M, HORVATH C, MILLER D R, et al. Validation of NASA thermal ice protection computer codes. Ⅲ-The validation of ANTICE:AIAA-1997-0051[R]. Reston, VA:AIAA, 1997.
[5] MORENCY F, BRAHIMI M T, TEZOK F, et al. Hot air anti-icing system modelization in the ice predict ion code CANICE:AIAA-1998-0192[R]. Reston, VA:AIAA, 1998.
[6] SILVA G A L, SILVARES O M, ZERBINI E J G J. Numerical simulation of airfoil thermal anti-ice operation:Part Ⅰ-Mathematical modeling[J]. Journal of Aircraft, 2007, 44(2):627-634.
[7] SILVA G A L, SILVARES O M, ZERBINI E J G J. Numerical simulation of airfoil thermal anti-ice operation:Part Ⅱ-Implementation and results[J]. Journal of Aircraft, 2007, 44(2):635-641.
[8] ROTH J R, SHERMAN D M, WILKINSON S P.Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma:AIAA-1998-0328[R]. Reston, VA:AIAA, 1998.
[9] WINKEL R, CORREALE G, KOTSONIS M. Effect of dielectric material on thermal effect produced by ns-DBD plasma actuator:AIAA-2014-2119[R]. Reston, VA:AIAA, 2014.
[10] ERFANI R, HALE C, KONTIS K. The influence of electrode configuration and dielectric temperature on plasma actuator performance:AIAA-2011-0955[R]. Reston, VA:AIAA, 2011.
[11] NUDNOVA M, KINDUSHEVA S, ALEKSAHDROV N, et al. Rate of plasma thermalization of pulsed nanosecond surface dielectric barrier discharge:AIAA-2010-0465[R]. Reston, VA:AIAA, 2010.
[12] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185.
[13] LITTLE J, TAKASHIMA K, NISHIHARA M, et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2):350-365.
[14] SHANG J S, MENART J, KIMMEL R, et al. Hypersonic inlet with plasma induced compression:AIAA-2006-0764[R]. Reston, VA:AIAA, 2006.
[15] NISHIHARA M, TAKASHIMA K, RICH J W, et al. Mach 5 bow shock control by a nanosecond pulse surface DBD:AIAA-2011-1144[R]. Reston, VA:AIAA, 2011.
[16] GALLEY D, PILLA G, LACOSTE D, et al. Plasma-enhanced combustion of a lean premixed air-propane turbulent flame using a nanosecond repetitively pulsed plasma:AIAA-2005-1193[R]. Reston, VA:AIAA, 2005.
[17] MIZOKAMI T, NOGUCHI D, FUKAGATA K. Lift and drag control using dielectric barrier discharge plasma actuators installed on the wingtips:AIAA-2013-2456[R]. Reston, VA:AIAA, 2013.
[18] FONT G I, JUNG S, ENLOE C L, et al. Simulation of the effects of force and heat produced by a plasma actuator on neutral flow evolution:AIAA-2006-0167[R]. Reston, VA:AIAA, 2006.
[19] ORLOV D M, CORKE T C, PATEL M P. Electric circuit model for aerodynamic plasma actuator:AIAA-2006-1206[R]. Reston, VA:AIAA, 2006.
[20] BOUEF J P, LAGMICH Y, CALLEGARI T, et al. Electro hydro dynamic force and acceleration in surfaces discharges:AIAA-2006-3574[R]. Reston, VA:AIAA, 2006.
[21] UNFER T, BOEUF J P. Modelling of a nanosecond surface discharge actuator[J]. Journal of Physics D:Applied Physics, 2009, 42(19):194017-194028.
[22] SUZEN Y B, HUANG P G, JACOB J D, et al. Numerical simulations of plasma based flow control applications:AIAA-2005-4633[R]. Reston, VA:AIAA, 2005.
[23] 赵光银, 李应红, 梁华, 等. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真[J].物理学报, 2015, 64(1):015101-015111. ZHAO G Y, LI Y H, LIANG H, et al. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control[J]. Acta Physica Sinica, 2015, 64(1):015101-015111(in Chinese).
[24] CHEN Z L, HAO L Z, ZHANG B Q. A model for nanosecond pulsed dielectric barrier discharge actuator and its investigation on the mechanisms of separation control over an airfoil[J]. Science China Technological Sciences, 2013, 56(5):1055-1065.
[25] CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8):102.
[26] TRAN P, BRAHIMI M T, PARASCHIVOIU I, et al. Ice accretion on aircraft wings with thermodynamics effects:AIAA-1994-0605[R]. Reston, VA:AIAA, 1994.
[27] 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11):2152-2158. YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2152-2158(in Chinese).
[28] TAKASHIMA K, ZUZEEK Y, LEMPERT W R, et al. Characterization of surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses:AIAA-2010-4764[R]. Reston, VA:AIAA, 2010.
[29] FORTIN G, ILINCA A, LAFORTE J, et al. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling:AIAA-2003-1076[R]. Reston, VA:AIAA, 2003.
[30] SHIN J, BOND T H. Results of an icing test on a NACA 0012 airfoil in the NASA lewis icing research tunnel:AIAA-1992-0647[R]. Reston, VA:AIAA, 1992.
[31] STARIKOVSKⅡ A Y, ROUPASSOV D V, NIKIPELOV A A, et al. Acoustic noise and flow separation control by plasma actuator:AIAA-2009-0695[R]. Reston, VA:AIAA, 2009.
文章导航

/