Ice accretion is a common phenomenon in flights. The ice accretion on wings causes weight increase, aero-dynamic performance degradation and control ability difficulties, so the ice protection system is necessary. The hot air anti-ice system and the electro-thermal anti-ice system have been used widely in current planes. In recent years, plasma active flow control has received growing attention. In experiments, the NanoSecond pulse Dielectric Barrier Discharge (NSDBD) plasma actuator is observed to be able to heat the gas quickly. Considering the heating effect, this paper makes a numerical analysis of the anti-icing property of the NSDBD plasma actuator. First, an ice accretion model is developed based on the Messinger model. Second, the influence of the plasma on the air flow field is calculated by using the phenomenological model for the NSDBD plasma actuator and unsteady Reynolds-Averaged Navier-Stokes equations. Thirdly, the NSDBD plasma actuator is placed in the anti-ice area of the leading edge of the NACA0012 airfoil. The phenomenological model for the NSDBD plasma actuator and the ice accretion model are combined to study the anti-icing property of the NSDBD plasma actuator. The result shows that the hot air heated by the plasma can cover the anti-icing area for a long time. The numerical simulation result shows that there is no ice accretion when the plasma actuator is operating in the rime ice condition, demonstrating the effectiveness of the NSBDB plasma actuator used in anti-icing. Then anti-icing properties of the NSDBD plasma actuator with different parameters have also been studied. In general, the peak voltage and pulse frequency have influence on the anti-icing performance of the NSDBD plasma actuator. With respect to energy consumption and anti-icing effect, there exist the optimal peak voltage value and pulse frequency under the given calculation conditions. The arrangement of the plasma actuator also influences the anti-icing property, and should be analyzed specifically.
[1] DURST F, MILOIEVIC D, SCHÖNUNG B. Eulerian and lagrangian predictions of particulate two-phase flows:A numerical study[J]. Applied Mathematical Modelling, 1984, 8(2):101-115.
[2] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.
[3] MACARTHUR C D. Numerical simulation of airfoil ice accretion:AIAA-1983-0112[R]. Reston, VA:AIAA, 1983.
[4] AL-KHALIL K M, HORVATH C, MILLER D R, et al. Validation of NASA thermal ice protection computer codes. Ⅲ-The validation of ANTICE:AIAA-1997-0051[R]. Reston, VA:AIAA, 1997.
[5] MORENCY F, BRAHIMI M T, TEZOK F, et al. Hot air anti-icing system modelization in the ice predict ion code CANICE:AIAA-1998-0192[R]. Reston, VA:AIAA, 1998.
[6] SILVA G A L, SILVARES O M, ZERBINI E J G J. Numerical simulation of airfoil thermal anti-ice operation:Part Ⅰ-Mathematical modeling[J]. Journal of Aircraft, 2007, 44(2):627-634.
[7] SILVA G A L, SILVARES O M, ZERBINI E J G J. Numerical simulation of airfoil thermal anti-ice operation:Part Ⅱ-Implementation and results[J]. Journal of Aircraft, 2007, 44(2):635-641.
[8] ROTH J R, SHERMAN D M, WILKINSON S P.Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma:AIAA-1998-0328[R]. Reston, VA:AIAA, 1998.
[9] WINKEL R, CORREALE G, KOTSONIS M. Effect of dielectric material on thermal effect produced by ns-DBD plasma actuator:AIAA-2014-2119[R]. Reston, VA:AIAA, 2014.
[10] ERFANI R, HALE C, KONTIS K. The influence of electrode configuration and dielectric temperature on plasma actuator performance:AIAA-2011-0955[R]. Reston, VA:AIAA, 2011.
[11] NUDNOVA M, KINDUSHEVA S, ALEKSAHDROV N, et al. Rate of plasma thermalization of pulsed nanosecond surface dielectric barrier discharge:AIAA-2010-0465[R]. Reston, VA:AIAA, 2010.
[12] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185.
[13] LITTLE J, TAKASHIMA K, NISHIHARA M, et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2):350-365.
[14] SHANG J S, MENART J, KIMMEL R, et al. Hypersonic inlet with plasma induced compression:AIAA-2006-0764[R]. Reston, VA:AIAA, 2006.
[15] NISHIHARA M, TAKASHIMA K, RICH J W, et al. Mach 5 bow shock control by a nanosecond pulse surface DBD:AIAA-2011-1144[R]. Reston, VA:AIAA, 2011.
[16] GALLEY D, PILLA G, LACOSTE D, et al. Plasma-enhanced combustion of a lean premixed air-propane turbulent flame using a nanosecond repetitively pulsed plasma:AIAA-2005-1193[R]. Reston, VA:AIAA, 2005.
[17] MIZOKAMI T, NOGUCHI D, FUKAGATA K. Lift and drag control using dielectric barrier discharge plasma actuators installed on the wingtips:AIAA-2013-2456[R]. Reston, VA:AIAA, 2013.
[18] FONT G I, JUNG S, ENLOE C L, et al. Simulation of the effects of force and heat produced by a plasma actuator on neutral flow evolution:AIAA-2006-0167[R]. Reston, VA:AIAA, 2006.
[19] ORLOV D M, CORKE T C, PATEL M P. Electric circuit model for aerodynamic plasma actuator:AIAA-2006-1206[R]. Reston, VA:AIAA, 2006.
[20] BOUEF J P, LAGMICH Y, CALLEGARI T, et al. Electro hydro dynamic force and acceleration in surfaces discharges:AIAA-2006-3574[R]. Reston, VA:AIAA, 2006.
[21] UNFER T, BOEUF J P. Modelling of a nanosecond surface discharge actuator[J]. Journal of Physics D:Applied Physics, 2009, 42(19):194017-194028.
[22] SUZEN Y B, HUANG P G, JACOB J D, et al. Numerical simulations of plasma based flow control applications:AIAA-2005-4633[R]. Reston, VA:AIAA, 2005.
[23] 赵光银, 李应红, 梁华, 等. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真[J].物理学报, 2015, 64(1):015101-015111. ZHAO G Y, LI Y H, LIANG H, et al. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control[J]. Acta Physica Sinica, 2015, 64(1):015101-015111(in Chinese).
[24] CHEN Z L, HAO L Z, ZHANG B Q. A model for nanosecond pulsed dielectric barrier discharge actuator and its investigation on the mechanisms of separation control over an airfoil[J]. Science China Technological Sciences, 2013, 56(5):1055-1065.
[25] CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8):102.
[26] TRAN P, BRAHIMI M T, PARASCHIVOIU I, et al. Ice accretion on aircraft wings with thermodynamics effects:AIAA-1994-0605[R]. Reston, VA:AIAA, 1994.
[27] 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11):2152-2158. YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2152-2158(in Chinese).
[28] TAKASHIMA K, ZUZEEK Y, LEMPERT W R, et al. Characterization of surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses:AIAA-2010-4764[R]. Reston, VA:AIAA, 2010.
[29] FORTIN G, ILINCA A, LAFORTE J, et al. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling:AIAA-2003-1076[R]. Reston, VA:AIAA, 2003.
[30] SHIN J, BOND T H. Results of an icing test on a NACA 0012 airfoil in the NASA lewis icing research tunnel:AIAA-1992-0647[R]. Reston, VA:AIAA, 1992.
[31] STARIKOVSKⅡ A Y, ROUPASSOV D V, NIKIPELOV A A, et al. Acoustic noise and flow separation control by plasma actuator:AIAA-2009-0695[R]. Reston, VA:AIAA, 2009.