非定常气动力建模除了要准确描述气动力的非定常特性,还要反映其非线性特性。Volterra级数因为对系统非线性具有很强的描述能力正日益受到重视。一阶Volterra核只能表达线性特性,要建立反映非线性特性的非定常气动力模型,需要引入二阶核甚至更高阶核的影响。高阶Volterra核辨识的主要困难在于待辨识参数的数量随着核阶次的增加而呈指数增加导致计算难度急剧加大,即出现所谓维数灾难问题。以一种分段二次多小波为基函数将Volterra核展开,求解一个高维病态方程组来计算展开系数,利用小波的多分辨分析在时间和频率两个维度的分解特性将方程降维,最终将问题转化为求解一个低维方程组得到稳定解。通过NACA0012翼型在马赫数0.8下作沉浮运动时,升力系数、阻力系数和俯仰力矩系数的二阶核和三阶核的辨识构建非定常气动力模型,然后由此计算不同减缩频率下的气动力并与CFD结果进行比较,验证了Volterra级数对非线性非定常气动力的描述能力和多小波处理方法的有效性。
Unsteady aerodynamics modeling must accurately describe the nonlinear aerodynamic characteristics in addition to unsteady aerodynamic characteristics. The Volterra series has got more and more attention as a powerful tool for nonlinear system modeling. The first order Volterra kernel can only describe the linear characteristics of the system. It is thus essential to incorporate the influence of the second order kernel or higher order kernels to build a nonlinear unsteady aerodynamics model. The main difficulty of higher order kernels identification is the number of parameters needed to be identified increases exponentially with the order of the kernel. This results in a dramatic increase of computational difficulty, and the so-called dimensional disaster arises. This paper expands the Volterra kernels using the piecewise-quadratic multiwavelet as the basis function. In the process of solving high dimensional and ill-posed equations, the paper utilizes the decomposition of multiwavelet multiresolution analysis in time and frequency to reduce the dimension of equations, and finally turns the problem into solving low dimensional equations and gets a stable solution. By identifying the second order kernel and the third order kernel of the lift coefficient, drag coefficient and pitching moment coefficient of the NACA0012 airfoil in plunging motion at Mach number 0.8, a nonlinear unsteady aerodynamics model is constructed. The aerodynamics in different reduced frequency is computed, and is compared with the CFD results to verify the ability of the Volterra series to describe nonlinear and unsteady aerodynamics and the effectiveness of the multiwavelet processing method.
[1] GHOREYSHI M, BADCOCK K J, RONCH A D, et al. Framework for establishing limits of tabular aerodynamic models for flight dynamics analysis[J]. Journal of Aircraft, 2011, 48(1):42-55.[2] GHOREYSHI M, JIRASEK A, CUMMINGS R M. Computational investigation into the use of response functions for aerodynamic-load modeling[J]. AIAA Journal, 2012, 50(6):1314-1327.[3] MCCRACKEN A J, KENNETT D J, BADCOCK K J, et al. Assessment of tabular models using CFD:AIAA-2013-4978[R]. Reston,VA:AIAA, 2013.[4] GHOREYSHI M, JIRASEK A, CUMMINGS R M. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in Aerospace Sciences, 2014, 71:167-217.[5] RONCH A D, BADCOCK K J, KHRABROV A, et al. Modeling of unsteady aerodynamic loads:AIAA-2011-6524[R]. Reston,VA:AIAA, 2011.[6] LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling:New approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2):51-117.[7] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6):686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and itsapplication[J]. Advances in Mechanics, 2011, 41(6):686-701(in Chinese).[8] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2331-2347. WANG Q, QIAB W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese).[9] BOYD S, CHUA L O, DESOER C A. Analytical foundations of Volterra series[J]. IMA Journal of Mathematical Control and Information, 1984, 1(3):243-282.[10] 吴志刚, 杨超. 基于Volterra级数的跨音速非定常气动力建模[J]. 北京航空航天大学学报, 2006, 32(4):373-376. WU Z G, YANG C. Volterra series based transonic unsteady aerodynamics modeling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(4):373-376(in Chinese).[11] SILVA W A. Application of nonlinear systems theory to transonic unsteady aerodynamic responses[J]. Journal of Aircraft, 1993, 30(5):660-668.[12] SILVA W A. Reduced-order models based on linear and nonlinear aerodynamic impulse responses:AIAA-1999-1262[R]. Reston,VA:AIAA, 1999.[13] 陈刚. 非定常气动力降阶模型及其应用研究[D]. 西安:西北工业大学, 2004:24-30. CHEN G. Reduced order model for unsteady aerodynamics and itsapplication[D]. Xi'an:Northwestern Polytechnical University, 2004:24-30(in Chinese).[14] BALAJEWICZ M, DOWELL E. Reduced-order modeling of flutter and limit-cycle oscillations using the sparse Volterra series[J]. Journal of Aircraft, 2012, 49(6):1803-1812.[15] PRAZENICA R J, KURDILA A J. Multiwavelet constructions and Volterra kernel identification[J]. Nonlinear Dynamics, 2006, 43(3):277-310.[16] SCHETZEN M. The Volterra and Wiener theories of nonlinear systems[M]. Malabar, Florida:Krieger Pub, 2006:7-9, 80-81.[17] BOYD S, CHUA L O. Fading memory and the problem of approximating nonlinear operators with Volterra series[J]. IEEE Transactions on Circuits and Systems, 1985, 32(11):1150-1161.[18] BRENNER M, JIANG Y, XU Y S. Multiparameter regularization for Volterra kernel identification via multiscale collocation methods[J]. Advances in Computational Mathematics, 2009, 31(4):421-455.[19] BALAJEWICZ M, NITZSCHE F, FESZTY D. Reduced order modeling of nonlinear transonic aerodynamics using a pruned Volterra series:AIAA-2009-2319[R]. Reston,VA:AIAA, 2009.[20] SMITH D A. Identification of nonlinear control models using Volterra-Laguerre series[D]. Ann Arbor:The University of Utah, 2010:21-37.[21] 王云海, 韩景龙, 张兵, 等. 空气动力二阶核函数辨识方法[J]. 航空学报, 2014, 35(11):2949-2957. WANG Y H, HAN J L, ZHANG B, et al. Identification method of second-order kernels in aerodynamics[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2949-2957(in Chinese).[22] SILVA W, RAVEH D. Development of unsteady aerodynamic state-space models from CFD-based pulse responses:AIAA-2001-1213[R]. Reston,VA:AIAA, 2001.[23] TRONCHIN L. The emulation of nonlinear time-invariant audio systems with memory by means of Volterra series[J]. Journal of the Audio Engineering Society, 2012, 60(12):984-996.[24] SHIKI SB, LOPES V Jr, DA SILVA S. Identification of nonlinear structures using discrete-time Volterra series[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(3):523-532.