材料工程与机械制造

基于ESO的DGVSCMG双框架伺服系统不匹配扰动抑制

  • 李海涛 ,
  • 林杰 ,
  • 韩邦成
展开
  • 1. 北京航空航天大学 仪器科学与光电工程学院, 北京 100083;
    2. 北京航空航天大学 新型惯性仪表与导航系统技术国防重点学科实验室, 北京 100083

收稿日期: 2017-08-01

  修回日期: 2017-10-16

  网络出版日期: 2017-10-13

基金资助

国家自然科学基金(61573032,61773038)

Mismatched disturbance rejection of double gimbal servo system in variable speed control moment gyroscope using a novel ESO method

  • LI Haitao ,
  • LIN Jie ,
  • HAN Bangcheng
Expand
  • 1. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100083, China;
    2. Laboratory of Fundamental Science on Novel Inertial Instrument and Navigation System Technology, Beihang University, Beijing 100083, China

Received date: 2017-08-01

  Revised date: 2017-10-16

  Online published: 2017-10-13

Supported by

National Natural Science Foundation of China (61573032, 61773038)

摘要

针对双框架变速率控制力矩陀螺(DGVSCMG)两种工作模式下内、外框架系统存在的不匹配干扰抑制问题,提出一种基于扩张状态观测器与状态反馈的扰动抑制方法。在对飞轮工作模式和陀螺工作模式下内、外框架系统的干扰进行建模和分析的基础上,针对其不匹配干扰设计了扩张状态观测器,通过坐标变换减小框架系统扰动对不匹配通道的影响,并结合状态反馈控制设计了复合控制器,同时对全局系统稳定性进行了分析。对框架系统进行的仿真结果验证了所提复合控制方法的有效性。实验结果表明,所提出的控制方法能有效减小耦合力矩对内外框架角速率带来的影响,在飞轮模式下使得内外框架的角速率跳动量分别降低了85%和78%,且在陀螺模式下使外框架角速率跳动量降低了75%。

本文引用格式

李海涛 , 林杰 , 韩邦成 . 基于ESO的DGVSCMG双框架伺服系统不匹配扰动抑制[J]. 航空学报, 2018 , 39(4) : 421641 -421641 . DOI: 10.7527/S1000-6893.2017.21641

Abstract

To handle the mismatched disturbance affecting the accuracy of double-gimbal system angular speed control in both working conditions of the Double Gimbal Variable Speed Control Moment Gyroscope (DGVSCMG), a composite controller combining Extended State Observer (ESO) and state feedback control are proposed. Based on modeling and analyzing the mismatched disturbances of the gimbal system in both flywheel mode and CMG mode, a novel ESO method for estimating mismatched disturbances is designed, and a composite controller combining state feedback control is proposed with an appropriately chosen coordinate transformation to decrease the mismatched disturbance impact on the gimbal system. The stability of the overall system is also analyzed. The simulation results validate the effectiveness of the proposed control method. The experimental results show that the proposed controller can effectively reduce the influence of coupling moment on the inner and outer gimbal angular rates. The angular rate fluctuations of the inner and outer gimbals are reduced by 85% and 78% respectively in the flywheel mode, and the angular rate fluctuation of the outer gimbal decreases by 75% in the CMG mode.

参考文献

[1] 房建成, 孙津济, 樊亚洪. 磁悬浮惯性动量轮技术[M]. 北京:国防工业出版社, 2012:15-26. FANG J C, SUN J J, FAN Y H. Magnetically suspended inertia momentum wheel technology[M]. Beijing:National Defense Industry Press, 2012:15-26(in Chinese).
[2] 房建成, 任元. 磁悬浮控制力矩陀螺技术[M]. 北京:国防工业出版社, 2014:1-17. FANG J C, REN Y. Magnetically suspended control moment gyroscope technology[M]. Beijing:National Defense Industry Press, 2014:1-17(in Chinese).
[3] 陈璐, 袁建平. 基于双框架变速控制力矩陀螺的航天器姿态控制研究[J]. 电子设计工程, 2014, 22(23):114-117. CHEN L, YUAN J P. Spacecraft attitude control based on a double-gimbal variable-speed control moment gyroscope[J]. Electronic Design Engineering, 2014, 22(23):114-117(in Chinese).
[4] 宁欣, 韩邦成, 房建成. 基于干扰观测器的双框架变速率控制力矩陀螺解耦控制[J]. 机械工程学报, 2017, 53(10):53-59. NING X, HAN B C, FANG J C. Disturbance observer based decoupling method of double-gimbaled variable speed control moment gyroscope[J]. Journal of Mechanical Engineering. 2017, 53(10):53-59(in Chinese).
[5] 崔培玲, 杨珊, 李海涛. 双框架MSCMG框架伺服系统的动力学解耦及扰动补偿[J]. 航空学报, 2016, 37(3):916-927. CUI P L, YANG S, LI H T. Dynamic decoupling control and disturbance compensation of gimbal servo system of double gimbal MSCMG[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):916-927(in Chinese).
[6] 李海涛, 房建成, 韩邦成, 等. 一种双框架磁悬浮控制力矩陀螺框架伺服系统扰动抑制方法研究[J]. 宇航学报, 2009, 30(6):2199-2205. LI H T, FANG J C, HAN B C, et al. Study on the system disturbance rejection method used in the gimbal servo system of double gimbal magnetically suspended control moment gyro[J]. Journal of Astronautics, 2009, 30(6):2199-2205(in Chinese).
[7] 徐向波, 房建成, 杨莲慧. 控制力矩陀螺框架系统高精度复合控制研究[J]. 载人航天, 2012, 18(5):19-23. XU X B, FANG J C, YANG L H. Study on high precision control of CMG gimbal system[J]. Manned Spaceflight, 2012, 18(5):19-23(in Chinese).
[8] 李红, 杭影, 韩邦成, 等. DGCMG框架伺服系统摩擦力矩建模及辨识[J]. 振动、测试与诊断, 2014, 34(6):1001-1007. LI H, HANG Y, HAN B C. et al. Analysis of friction torque model of DGCMG gimbal servo system with its identification[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(6):1001-1007(in Chinese).
[9] SU D, XU S. The precise control of a double gimbal MSCMG based on modal separation and feedback linearization[C]//International Conference on Electrical Machines and Systems. 2013:1355-1360.
[10] CHEN X C, REN Y. Modal decoupling control for a double gimbal magnetically suspended control moment gyroscope based on modal controller and feedback linearization method[J]. Proc IMechE Part C:Journal of Mechanical Engineering Science, 2014, 228(13):2303-2313.
[11] 李延宝, 李结冻, 孙宏丽, 等. 磁悬浮力矩陀螺内外框架低速高精度控制技术研究[J]. 上海航天, 2015, 32(5):20-25. LI Y B, LI J D, SUN H L, et al. Study on high precision control of low speed magnetically suspended control moment gyroscope for inside and outside gimbal[J]. Aerospace Shanghai, 2015, 32(5):20-25(in Chinese).
[12] RADKE A, GAO Z Q. A survey of state and disturbance observers for practitioners[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2006.
[13] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[14] LI S H, LIU Z G. Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8):3050-3059.
[15] ZHU E, PANG J, SUN N, et al. Airship horizontal trajectory tracking control based on Active Disturbance Rejection Control (ADRC)[J]. Nonlinear Dynamics, 2014, 75(4):725-734.
[16] SHI R, SONG J, WAN W. Active disturbance rejection control system design for a morphing wing structure[J]. Asian Journal of Control, 2014, 17(3):832-841.
[17] 韩京清, 张荣. 二阶扩张状态观测器的误差分析[J]. 系统科学与数学, 1999(4):465-471. HAN J Q, ZHANG R. Error analysis of second order ESO[J]. Journal of System Science and Math Science, 1999(4):465-471(in Chinese).
[18] LI S H, YANG J, CHEN W H, et al. Generalized extended state observer based control for systems with mismatched uncertainties[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12):4792-4802.
[19] LI H T, NING X, HAN B C. Composite decoupling control of gimbal servo system in double-gimbaled variable speed CMG via disturbance observer[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1):312-320.
[20] 魏彤, 房建成, 刘珠荣. 双框架磁悬浮控制力矩陀螺动框架效应补偿方法[J]. 机械工程学报, 2010, 46(2):159-165. WEI T, FANG J C, LIU Z R. Moving-gimbal effects compensation of double gimbal magnetically suspended control moment gyroscope based on compound control[J]. Journal of Mechanical Engineering, 2010, 46(2):159-165(in Chinese).
[21] GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 2003:4989-4996.
文章导航

/