流体力学与飞行力学

基于H算法的飞机机翼结冰气动参数辨识

  • 丁娣 ,
  • 车竞 ,
  • 钱炜祺 ,
  • 汪清
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2017-07-24

  修回日期: 2017-10-10

  网络出版日期: 2017-10-10

基金资助

国家"973"计划(2015CB755800)

Aerodynamic parameter identification for aircraft wing icing using H method

  • DING Di ,
  • CHE Jing ,
  • QIAN Weiqi ,
  • WANG Qing
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-07-24

  Revised date: 2017-10-10

  Online published: 2017-10-10

Supported by

National Basic Research Program of China (2015CB755800)

摘要

针对国内大型飞机结冰防护需求,开展针对大型结冰研究样机的H算法参数辨识结冰探测研究。首先通过参数调节选取一组合适的H算法参数,利用考虑测量噪声的结冰研究样机飞行仿真数据验证H算法的辨识能力,由结果对比发现辨识算法能够跟踪飞机气动导数随结冰累积过程的变化趋势,辨识精度较高,其最大归一化平方根(RMS)误差仅为真值的11%;分析了H算法对81种不同结冰累积过程的辨识能力,通过结果分析发现结冰累积时间较长且结冰速度较慢的情况辨识效果较差,结冰累积时间在100~300 s之间辨识精度较高;最后利用蒙特卡罗仿真分析了不同测量噪声大小对H算法辨识精度和跟踪延时的影响,给出了3个纵向气动导数在随机误差影响下的辨识误差和跟踪延时的统计结果,发现在给定噪声标准差变化范围内,升力和俯仰力矩关于迎角的导数能够得到较为准确的辨识结果,二者的归一化平方根误差均值仅为各自真值的1.8%和4%,其预报延时均值最大仅为3 s和9.5 s。

本文引用格式

丁娣 , 车竞 , 钱炜祺 , 汪清 . 基于H算法的飞机机翼结冰气动参数辨识[J]. 航空学报, 2018 , 39(3) : 121626 -121626 . DOI: 10.7527/S1000-6893.2017.21626

Abstract

H parameter identification for inflight icing detection is discussed in this paper for the development of the de-icing and anti-icing system of a large icing research prototype. First, the H method parameters are tuned and chosen.Then the method is evaluated by the airplane's longitudinal simulation data with measurement noises. The identification results show that the method can track the time-varying aerodynamic parameters in the ice accretion process, and that the maximum normalized Root Mean Square(RMS) error 11% indicates high accuracy of identification.The 81 different ice accretion processes are then identified by the H method.The results show that when the ice accretion process changes slowly and lasts long the identification accuracy is relatively poor, and that when the ice accretion time is between 100-300 s the accuracy is relatively high. The accuracy of H algorithm in the different standard deviations of measurement noises is analyzed by Monte Carlo simulation.The error and delay statistic characteristics of the three longitudinal aerodynamic derivatives show that the identification accuracy of derivatives of lift and pitching moment to angle of attack is relatively high as their mean normalized RMS errors are 1.8% and 4% respectively, and their mean delays are 3 s and 9.5 s respectively.

参考文献

[1] GORAJ Z.An overview of the deicing and anti-icing technologies with prospects for the future[C]//24th International Congress of Aeronautical Sciences, 2004.
[2] JARVINEN P. Aircraft ice detection method:AIAA-2007-696[R].Reston, VA:AIAA, 2007.
[3] CALISKAN F, HAJIYEV C. A review of inflight detection and identification of aircraft icing and reconfigurable control[J]. Progress in Aerospace Sciences, 2013, 60:12-34.
[4] BRAGG M B, BASAR T, PERKINS W R, et al. Smart icing systems for aircraft icing safety:AIAA-2002-0813[R]. Reston, VA:AIAA, 2002.
[5] WENZ A, JOHANSEN T A. Icing detection for small fixed wing UAVs using inflight aerodynamic coefficient estimation[C]//IEEE Conference on Control Applications. Piscataway, NJ:IEEE Press, 2016.
[6] MELODY J W, BASAR T, PERKINS W R, et al. Parameter identification for inflight detection and characterization of aircraft icing[J]. Control Engineering Practice, 2000, 8(9):985-1001.
[7] CRISTOFARO A, JOHANSEN T A, AGUIAR A P. Icing detection and identification for unmanned aerial vehicles:Multiple model adaptive estimation[C]//European Control Conference, 2015.
[8] 占荣辉,张军. 非线性滤波理论与目标跟踪应用[M]. 北京:国防工业出版社,2013:8-11. ZHAN R H, ZHANG J. Nonlinear filtering theory with target tracking application[M]. Beijing:National Defense Industry Press, 2013:8-11(in Chinese).
[9] SIMON D. 最优状态估计:卡尔曼, H及非线性滤波[M].张勇刚, 李宁, 奔粤阳, 译. 北京:国防工业出版社,2015:255-269. SIMON D. Optimal state estimation:Kalman, H and nonlinear approaches[M]. ZHANG Y G, LI N, BEN Y Y, translated. Beijing:National Defense Industry Press, 2015:255-269(in Chinese).
[10] DIDINSKY G, PAN Z, BASAR T. Parameter identification for uncertain plants using Hmethods[J]. Automatica, 1995, 31(9):1227-1250.
[11] MELODY J W, HILLBRAND T, BASAR T, et al. H parameter identification for inflight detection of aircraft icing:The time-varying case[J]. Control Engineering Practice, 2001, 9(12):1327-1335.
[12] MELODY J W. Inflight characterization of aircraft icing[D]. Illinois Urbana:University of Illinois at Urbana-Champaign Graduate College, 2004:1-6.
[13] SCHUCHARD E A, MELODY J W, BASAR T, et al. Detection and classification of aircraft icing using Neural Networks:AIAA-2000-0361[R]. Reston, VA:AIAA, 2000.
[14] DONG Y Q, AI J L. Research on inflight parameter identification and icing location detection of the aircraft[J]. Aerospace Science and Technology, 2013, 29(1):305-312.
[15] DONG Y Q, AI J L. Inflight parameter identification and icing location detection of the aircraft:The time-varying case[J/OL]. Journal of Control Science and Engineering, 2014:1-11.[2014-07-10].http://dx.doi.org/10.1155/2014/396532.
[16] 应思斌, 葛彤, 艾剑良. 飞机结冰时不变参数辨识技术[J]. 指挥控制与仿真, 2012, 34(4):55-60. YING S B, GE T, AI J L. Time invariant parameter identification of inflight aircraft icing[J]. Command Control & Simulation, 2012, 34(4):55-60(in Chinese).
[17] 应思斌, 葛彤, 艾剑良. 飞机结冰气动参数综合检测方法研究[J]. 指挥控制与仿真, 2012, 34(5):128-133. YING S B, GE T, AI J L. Research on comprehensive parameter identification of inflight aircraft icing[J]. Command Control & Simulation, 2012, 34(5):128-133(in Chinese).
[18] YING S B, GE T, AI J L. H parameter identification and H2 feedback control synthesizing for inflight aircraft icing[J]. Journal of Shanghai Jiaotong University, 2013, 18(3):317-325.
[19] RATVASKY T P, RANAUDO R J. Icing effects on aircraft stability and control determined from flight data:AIAA-1993-0398[R]. Reston, VA:AIAA, 1993.
[20] BRAGGM B, HUTCHISON T, MERRET J, et al. Effect of ice accretion on aircraft flight dynamics:AIAA-2000-0360[R]. Reston, VA:AIAA, 2000.
[21] AYKAN R, HAJIYEV C, CALISKAN F. Aircraft icing detection, identification and reconfigurable control based on Kalman filtering and neural networks:AIAA-2005-6220[R]. Reston, VA:AIAA, 2005.
文章导航

/