流体力学与飞行力学

典型标模音爆的数值预测与分析

  • 王刚 ,
  • 马博平 ,
  • 雷知锦 ,
  • 任炯 ,
  • 叶正寅
展开
  • 1. 西北工业大学 航空学院 流体力学系, 西安 710072;
    2. 西北工业大学 航空学院 航空器设计工程系, 西安 710072

收稿日期: 2017-05-27

  修回日期: 2017-09-21

  网络出版日期: 2017-09-21

基金资助

国家自然科学基金(11772265)

Simulation and analysis for sonic boom on several benchmark cases

  • WANG Gang ,
  • MA Boping ,
  • LEI Zhijin ,
  • REN Jiong ,
  • YE Zhengyin
Expand
  • 1. Department of Fluid Mechanics, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of Flight Vehicle Engineering, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-05-27

  Revised date: 2017-09-21

  Online published: 2017-09-21

Supported by

National Natural Science Foundation of China (11772265)

摘要

精确预测音爆对超声速民机的研制具有重要意义。主流的音爆强度预测方法分为两步,首先通过风洞试验或CFD方法得到近场音爆过压(Over-pressure)分布,再运用修正线化理论或非线性声学理论将近场过压传播至地面,最终获得地面音爆的声压信号。本文运用典型标模对当前音爆数值预测方法的精度进行了验证和确认。在近场音爆过压分布的数值预测方面,分别考察了超声速尖点构型前缘修形尺度、不同空间离散格式和无黏/有黏流动控制方程求解对近场过压计算结果的影响。远场音爆预测方面,以LM1021全机构型近场过压分布为输入,使用基于波形参数法的远场传播工具分别考察了不同离散格式和有/无黏性计算的近场过压分布差异对地面音爆结果的影响。算例结果表明,尖点构型近场音爆预测中进行几何修形是十分必要的,使用相对合理的过渡球半径可以保证近场音爆预测精度,过大的修形尺度会对激波形状、激波和膨胀波的峰值均产生较明显的影响;就近场波形而言,熵相容格式计算得到的结果与试验测量值吻合最好,但不同离散格式导致的近场预测波形差异对传播到远场的波形关键指标(主要是最大过压和上升时间)的影响很小;是否计入黏性对近场波形结果尽管仅有小幅的影响,但将近场信号传播到远场得到地面波形时,这些细微差异会在远场波形的音爆评价关键指标上表现出明显的区别。

本文引用格式

王刚 , 马博平 , 雷知锦 , 任炯 , 叶正寅 . 典型标模音爆的数值预测与分析[J]. 航空学报, 2018 , 39(1) : 121458 -121458 . DOI: 10.7527/S1000-6893.2017.21458

Abstract

Accurate prediction and simulation of sonic boom are of significant importance to the design of supersonic aircraft. The mainstream research approach for sonic boom prediction consists of two steps. First, the distribution of over-pressure in near field is calculated with wind tunnels or CFD, then the over-pressure is propagated to the ground by the modified linear wave equations or nonlinear Burger's equations. Using several benchmark cases, the accuracy of typical near field sonic boom prediction method is verified. For nearfield over-pressure prediction, the influence of semi-sphere radius, spatial discretization schemes and viscosity are investigated. For far-field sonic boom prediction, based on the nearfield over-pressure of LM1021 configuration, the influence of different discretization and with/without viscosity in nearfield simulation to the far-field signature prediction have been investigated. The results show that it is necessary to use semi-sphere to deal with the sharp tip in supersonic model. Using semi-sphere with reasonable radius will help guarantee the accuracy of nearfield prediction. The scale of modification will influence the shape of shock wave and the peak values of shock wave and expansion waves. For nearfield sonic boom prediction, the entropy consistent scheme performs better than the Roe and Central schemes. However, the discretization scheme has little influence on the key indicators of the far-field propagated signatures (mainly peak value of over-pressure and raise time). The effect of viscosity in the nearfield prediction is small, however, the slight difference caused by the viscosity in the nearfield domain would cause obvious difference in the far-field domain.

参考文献

[1] 张帅, 夏明, 钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016, 37(1):30-44. ZHANG S, XIA M, ZHONG B W. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):30-44(in Chinese).[2] PARK M A, AFTOSMIS M J, CAMPBELL R L, et al. Summary of the 2008 NASA fundamental aeronautics program sonic boom prediction workshop[J]. Journal of Aircraft,2014, 51(3):987-1001.[3] PARK M A, MORGENSTERN J M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop[C]//32nd AIAA Aplied Aerodynamics Conference.Reston, VA:AIAA, 2014.[4] PARK M A, MARIAN N. Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop:AIAA-2017-3256[R].Reston,VA:AIAA, 2017.[5] RALLABHANDIS K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop:AIAA-2017-3257[R]. Reston,VA:AIAA, 2017.[6] CHEUNG S, EDWARDS T, LAWRENCE S. Application of CFD to sonic boom near and midfield prediction:NASA TM-102867[R].Washington,D.C.:NASA,1990.[7] SICLARI M J, DARDEN C M. An euler code prediction of near-field to midfield sonic boom pressure signatures[J]. Journal of Aircraft,1990, 30(6):911-917.[8] WHITHAM G B. The flow pattern of asupersonic projectile[J]. Communications on Pure and Applied Mathematics,1952, 5(3):301-348.[9] PAGE J A, PLOTKIN K J. An efficient method for incorporating computational fluid dynamics into sonic boom prediction:AIAA-1991-3275[R]. Reston,VA:AIAA, 1991.[10] CLIFF S E, THOMAS S D. Euler/Experiment correlations of sonic boom pressure signatures[J]. Journal of Aircraft,1993, 30(5):669-675.[11] SICLARI M J, DARDEN C M. Euler code prediction of near-field to midfield sonic boom pressure signatures[J]. Journal of Aircraft, 1993, 30(6):911-917.[12] ALONSO J, JAMESON A, KROO I. Advanced algorithms for design and optimization of quiet supersonic platforms:AIAA-2002-0144[R]. Reston,VA:AIAA, 2002.[13] MEREDITH K, DAHLIN J, GRAHAM D, et al. Computational fluid dynamics comparison and flight test measurement of F-5E off-body pressures:AIAA-2005-0006[R]. Reston,VA:AIAA, 2005.[14] LAFLIN K R, KLAUSMEYER S M, CHAFFIN M A. Hybrid computational fluid dynamics procedure for sonic boom prediction:AIAA-2006-3168[R]. Reston,VA:AIAA, 2006.[15] JONES W, NIELSEN E, PARM M. Validation of 3D adjoint based error estimation and mesh adaptation for sonic boom prediction:AIAA-2006-1150[R]. Reston,VA:AIAA, 2006.[16] OZCER I, KANDIL O. Fun3D/OptiGRID coupling for unstructured grid adaptation for sonic boom problems:AIAA-2008-0061[R]. Reston,VA:AIAA, 2008.[17] AFTOSMIS M J, NEMEC M, CLIFF S E. Adjoint-based low-boom design with Cart3D:AIAA-2011-3500[R]. Reston,VA:AIAA, 2011.[18] NEMEC M, AFTOSMIS M, WINTZER M. Adjoint-based adaptive mesh refinement for complex geometries:AIAA-2008-0075[R]. Reston,VA:AIAA, 2008.[19] WINTZER M, NEMEC M, AFTOSMIS M. Adjoint-based adaptive mesh refinement for sonic boom prediction:AIAA-2008-6593[R]. Reston,VA:AIAA, 2008.[20] GAN J Y, ZHA G C. Near field sonic boom calculation of benchmark cases:AIAA-2015-1252[R]. Reston,VA:AIAA, 2015.[21] ALAUZET F, LOSEILLE A. High-order sonic boom modeling based on adaptive methods[J]. Journal of Computational Physics, 2010, 229(3):561-593.[22] KANDIL O, YANG Z, BOBBITT P. Prediction of sonic boom signature using euler-full potential CFD with grid adaptation and shock fitting:AIAA-2002-2542[R]. Reston,VA:AIAA, 2002.[23] RALLABHANDI S K. Advanced sonic boom prediction using the augmented burgers equation[J]. Journal of Aircraft, 2011, 48(4):1245-1253.[24] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015,36(8):2507-2528. ZHU Z Q, LAN S L. Study ofsupersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese).[25] 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010, 25(2):359-365. CHEN P, LI X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power,2010, 25(2):359-365(in Chinese).[26] 但聃, 杨伟. 超音速公务机声爆计算与布局讨论[J]. 航空工程进展, 2012, 3(1):7-15. DAN D, YANG W. Supersonic business jet sonic boom computation and layout discussion[J]. Aeronautical Science & Technology, 2012, 3(1):7-15(in Chinese).[27] 冯晓强, 李占科, 宋笔锋. 超音速客机音爆问题初步研究[J]. 飞行力学,2010, 28(6):21-23. FENG X Q, LI Z K, SONG B F. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6):21-23(in Chinese).[28] 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11):1980-1986. FENG X Q, LI Z K, SONG B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2011:32(11):1980-1986(in Chinese).[29] 冯晓强, 李占科, 宋笔锋, 等. 基于混合网格的声爆/气动一体化设计方法研究[J]. 空气动力学学报, 2014, 32(1):30-37. FENG X Q, LI Z K,SONG B F, et al. Optimization of sonic boom and aerodynamic based on structured/unstructured hybrid grid[J]. Acta Aerodynamica Sinica, 2014, 32(1):30-37(in Chinese).[30] FENG X Q, LI Z K, SONG B F. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics,2014, 27(3):531-541.[31] 徐悦, 宋万强. 典型低音爆构型的近场音爆计算研究[J]. 航空科学技术, 2016, 27(7):12-16. XU Y, SONG W Q. Near field sonic boom calculation on typical LSB configuration[J]. Aeronautical Science & Technology,2016, 27(7):12-16(in Chinese).[32] MA B P, WANG G, REN J,et al. Near field sonic boom analysis with HUNS3D solver:AIAA-2017-0038[R]. Reston,VA:AIAA, 2017.[33] WANG G, YE Z Y. Mixed element type unstructured grid generation and its application to viscous flow simulation[C]//24th International Congress of the Aeronautical Sciences. ICAS, 2004.[34] LI C N, YE Z Y, WANG G. Simulation of flow separation at the wing-body junction with different fairings[J]. Journal of Aircraft,2008, 45(1):258-266.[35] MIAN H H, WANG G, RAZA M A. Application and validation of HUNS3D flow solver for aerodynamic drag prediction cases[J].International Bhurban Conference on Applied Sciences and Technology, 2013,20(3):209-218.[36] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.[37] LIOU M S. Ten years in the making-AUSM-family[C]//15th AIAA Computational Fluid Dynamics Conference.Reston,VA:AIAA,2013.[38] lSMAIL, FARZAD, PHILIP L. Affordable, entropy-consistent euler flux functions Ⅱ:Entropy production at shocks[J]. Journal of Computational Physics,2009, 228(15):5410-5436.[39] ZHA G C, SHEN Y, WANG B. An improved low diffusion E-CUSP upwind scheme[J]. Computers & Fluids,2011, 48(1):214-220.[40] JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the euler equations by finite volume methods using runge kutta time stepping schemes:AIAA-1981-1259[R]. Reston,VA:AIAA, 1981.[41] SPALART P, ALLMARAS S A. One-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston,VA:AIAA, 1992.[42] MENTER F R. Zonal two equation k-w turbulence models for aerodynamic flows[J]. AIAA Journal, 1993, 36(11):1975-1982.[43] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R].Washongton,D.C.:NASA, 1972.[44] PLOTKIN K J. Review of sonic boom theory:AIAA-1989-1105[R]. Reston,VA:AIAA, 1989.[45] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:The University of Texas at Austin, 1995.[46] LEATHERWOOD J D, SULLIVAN B M. Effect of sonic boom asymmetry on subjective loudness:NASA TM-107708[R].Wasington,D.C.:NASA, 1992.[47] LEATHERWOOD J D, SULLIVAN B M, SHEPHERD K P, et al. A summary of recent NASA studies of human response to sonic booms[J]. The Journal of the Acoustical Society of America, 2002, 111(1):586-598.[48] CARLSON H W, MACK R J, MORRIS O A. A wind-tunnel investigation of the effect of body shape on sonic-boom pressure distributions:NASA TN-D-3106[R].Washington,D.C.:NASA,1965.[49] HUNTON L W, HICKS R M, MENDOZA J P. Some effects of wing planform on sonic boom:NASA TN-D-7160[R].Washington,D.C.:NASA,1973.
文章导航

/