流体力学与飞行力学

CRM-WB风洞模型高阶精度数值模拟

  • 王运涛 ,
  • 孟德虹 ,
  • 孙岩 ,
  • 李伟
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力学研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000

收稿日期: 2017-08-02

  修回日期: 2017-09-11

  网络出版日期: 2017-09-11

基金资助

国家重点研究发展计划(2016YFB0200700)

High-order numerical simulation of CRM-WB wind tunnel model

  • WANG Yuntao ,
  • MENG Dehong ,
  • SUN Yan ,
  • LI Wei
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-08-02

  Revised date: 2017-09-11

  Online published: 2017-09-11

Supported by

National Key Research and Development Program (2016YFB0200700)

摘要

通过求解雷诺平均Navier-Stokes (RANS)方程,采用5阶空间离散精度的WCNS和多块对接结构网格技术,开展了CRM翼身组合体风洞试验模型的高阶精度数值模拟,计算构型和计算状态来自AIAA第6届阻力预测研讨会(DPW Ⅵ)。主要目的是采用高阶精度方法,评估静气动弹性变形和模型支撑装置对CRM翼身组合体数值模拟结果的影响。通过与刚性外形的计算结果和NASA NTF风洞试验结果的对比,高阶精度数值模拟结果表明:迎角为3.0°时,静气动弹性变形使得机翼上表面激波位置前移并显著降低了外侧机翼上表面激波位置前的负压;迎角为3.0°时,模型支撑装置使得机翼上表面激波位置进一步前移,并导致翼梢处机翼上表面流动结构发生变化;迎角为4.0°时,计算模型中没有包含模型支撑装置是导致升力系数下降的主要原因;计算模型中包含机翼静气动弹性变形和模型支撑装置的数值模拟结果更加接近试验结果。

本文引用格式

王运涛 , 孟德虹 , 孙岩 , 李伟 . CRM-WB风洞模型高阶精度数值模拟[J]. 航空学报, 2018 , 39(4) : 121642 -121642 . DOI: 10.7527/S1000-6893.2017.21642

Abstract

A high-order numerical simulation of the Common Research Model (CRM) wing-body test model is presented by solving Reynolds-Averaged Navier-Stokes (RANS) equations with the fifth-order Weighted Compact Nonlinear Scheme (WCNS) and multi-block 1-to-1 structured grid. The test model and initial conditions are obtained from the sixth AIAA Drag Prediction Workshop (DPW Ⅵ). The purpose of present work is to assess the influence of the static aeroelastic deformation and support system on the numerical results of the CRM wing-body configuration by using high-order numerical method. Compared to the numerical results of the "rigid" CRM wing-body configuration and the experimental data from the NASA National Transonic Facility (NTF) wind tunnel, the high-order numerical results show that for 3.0° angle of attack, the static aeroelastic deformation moves the shock wave upward on the wing upper surface, and decreases the negative pressure before the shock wave; the support system moves the shock wave further upward and changes the flow structure near the wing tip. The main reason for the lift curve break at 4.0° angle of attack is that the computational model does not include the support system. The numerical results with the addition of the static aeroelastic deformation and support system into the calculation model match the experimental results more closely.

参考文献

[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the First AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the Second AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the Third AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Fourth AIAA Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R].Reston, VA:AIAA, 2008.
[6] RIVERS M B, DITTBERNER A. Experimental investigation of the NASA common research model (invited):AIAA-2010-4218[R]. Reston,VA:AIAA, 2010.
[7] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model in the NASA Langley transonic facility and NASA Ames 11-ft transonic wind tunnel (invited):AIAA-2011-1126[R]. Reston, VA:AIAA, 2011.
[8] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[9] 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3):120298. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120298(in Chinese).
[10] DAVID H. CFD investigation on the DPW-5 configuration with measured experimental wing twist using the elsA slover and the far-field approach:AIAA-2013-2508[R]. Reston, VA:AIAA, 2013.
[11] KEYE S, BRODERSEN O, RIVERS M B, et al. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4):1323-1330.
[12] TINOCO E N, BRODERSEN O P, KEYE S, et al. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:CRM case 2 to 5:AIAA-2017-1208[R]. Reston, VA:AIAA, 2017.
[13] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of the support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston, VA:AIAA, 2012.
[14] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.
[15] SONI B K. Grid generation for internal flow configuration[J]. Computers & Mathematics with Applications, 1992, 24(5-6):191-201.
[16] 孙岩, 邓小刚, 王运涛, 等. RBF_TFI结构动网格技术在风洞静气动弹性修正中的应用[J]. 工程力学, 2014, 31(10):228-233. SUN Y, DENG X G, WANG Y T, et al. Application of structural dynamic grid method based on RBF_TFI on wind tunnel static aero-elastic modification[J]. Engineering Mechanics, 2014, 31(10):228-233(in Chinese).
[17] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1):24-44.
[18] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[20] CHEN R F, WANG Z J. Fast, Block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
[21] 王光学, 张玉伦, 王运涛, 等. BLU-SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU-SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
文章导航

/