材料工程与机械制造

电偶效应对与30CrMnSiA钢耦合的7B04铝合金当量折算系数的影响

  • 陈跃良 ,
  • 赵红君 ,
  • 卞贵学 ,
  • 张勇
展开
  • 海军航空工程学院青岛校区, 青岛 266041

收稿日期: 2017-04-25

  修回日期: 2017-09-01

  网络出版日期: 2017-08-31

基金资助

国家自然科学基金(51377503)

Influence of galvanic action on equivalent conversion coefficient of 7B04 aluminum alloy coupled with 30CrMnSiA steel

  • CHEN Yueliang ,
  • ZHAO Hongjun ,
  • BIAN Guixue ,
  • ZHANG Yong
Expand
  • Qingdao Extension, Naval Aeronautical Engineering Institute, Qingdao 266041, China

Received date: 2017-04-25

  Revised date: 2017-09-01

  Online published: 2017-08-31

Supported by

National Natural Science Foundation of China (51377503)

摘要

借助动电位极化技术分别测得不同浓度NaCl溶液和水介质中7B04铝合金和30CrMnSiA钢的极化曲线。采用数值模拟与电化学实验相结合的方法,计算得到不同阴阳极面积比下、不同浓度NaCl溶液中7B04铝合金和30CrMnSiA钢的电偶电流。借助扫描电镜观察耦合前后7B04铝合金和30CrMnSiA钢试样腐蚀后的微观形貌。基于当量折算法的原理,以极化曲线作为边界条件建立数学模型,折算出多种阴阳极面积比下与30CrMnSiA钢耦合后的7B04铝合金在不同浓度NaCl溶液与水介质中的当量折算系数。结果表明,Cl-浓度和阴极面积的增加均会加剧电偶腐蚀,相较而言,阴阳极面积比的影响更为强烈。与30CrMnSiA钢耦合后,7B04铝合金加速腐蚀,在不同浓度NaCl溶液与水介质中的当量折算系数均出现不同程度的减小。

本文引用格式

陈跃良 , 赵红君 , 卞贵学 , 张勇 . 电偶效应对与30CrMnSiA钢耦合的7B04铝合金当量折算系数的影响[J]. 航空学报, 2017 , 38(12) : 421358 -421358 . DOI: 10.7527/S1000-6893.2017.421358

Abstract

The potentiodynamic polarization technique was used to measure the polarization curves of 7B04 aluminum alloy and 30CrMnSiA steel in different concentration of NaCl solution and aqueous media. The galvanic current of 7B04 aluminum alloy contacted with 30CrMnSiA steel in NaCl solution with different concentrations and different area ratios were calculated by numerical simulation and electrochemical experiment. Micromorphology of 7B04 aluminum alloy coupled with 30CrMnSiA steel or not after corrosion was observed by Scanning Electron Microscopy (SEM). Based on the equivalent conversion coefficient method, while the mathematical model was established by using the polarization curve as the boundary condition, the equivalent conversion coefficient of 7B04 aluminum alloy coupled with 30CrMnSiA steel in NaCl solution with different concentrations, aqueous media, and different area ratios of cathode to anode were investigated. Results show that the increase of Cl- concentration and cathode area can aggravate galvanic corrosion, and the ratio of anode to cathode area was more intense comparatively. Furthermore, the 7B04 aluminum alloy after being coupled with 30CrMnSiA steel accelerated corrosion, and the equivalent conversion coefficient of 7B04 aluminum alloy in NaCl solution with different concentrations and aqueous media tended to decrease to different degrees.

参考文献

[1] 陈跃良, 王晨光, 张勇, 等. 钛-钢螺栓搭接件涂层腐蚀失效分析及影响[J]. 航空学报, 2016, 37(11):3528-3534. CHEN Y L, WANG C G, ZHANG Y, et al. Coating corrosion failure analysis and influence research of titanium-steel bolted lap joints[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3528-3534(in Chinese).[2] 赵海军, 金平, 陈跃良. 飞机地面局部气候环境研究[J]. 航空学报, 2006, 27(5):873-876. ZHAO H J, JIN P, CHEN Y L. Study on local climate environment of aircraft ground[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):873-876(in Chinese).[3] CORVO F, PEREZ T, DZIB L R, et al. Outdoor-indoor corrosion of metals in tropical coastal atmospheres[J]. Corrosion Science, 2008, 50(1):220-230.[4] 张蕾, 陈群志, 宋恩鹏. 军机某疲劳关键部位加速腐蚀当量关系研究[J]. 强度与环境, 2009, 36(2):45-50. ZHANG L, CHEN Q Z, SONG E P. Study on accelerated corrosion equivalent relationship of some critical parts of military aircraft[J]. Structure & Environment Engineering, 2009, 36(2):45-50(in Chinese).[5] 陈跃良, 段成美, 金平, 等. 飞机结构局部环境加速腐蚀当量谱[J]. 南京航空航天大学学报, 1999, 31(3):338-341. CHEN Y L, DUAN C M, JIN P, et al. Local environment and accelerating corrosion equivalent spectrums of aircraft structure[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1999, 31(3):338-341(in Chinese).[6] 李金桂. 军用飞机防腐蚀设计[J]. 材料工程, 1998(6):7-9. LI J G. Anti corrosion design of military aircraft[J]. Journal of Materials Engineering, 1998(6):7-9(in Chinese).[7] 陈跃良, 王哲夫, 卞贵学, 等. 不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系[J]. 航空学报, 2017, 38(3):260-268. CHEN Y L, WANG Z F, BIAN G X, et al. Equivalent conversion of galvanic corrosion of typical aluminium-titanium alloy in NaCl solution with different concentration[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):260-268(in Chinese).[8] 汝继刚, 伊琳娜. 不同时效处理对7B04铝合金腐蚀性能的影响[J]. 轻合金加工技术, 2004, 32(5):45-47. RU J G, YI L N. Effect of different ageing treatment on corrosion properties of 7B04 alloy[J]. Light Alloy Fabrication Technology, 2004, 32(5):45-47(in Chinese).[9] 李昌范, 何宇廷, 张胜, 等. 7B04-T6铝合金腐蚀疲劳交替寿命预测模型[J]. 航空动力学报, 2016, 31(5):1073-1080. LI C F, HE Y T, ZHANG S, et al. Prediction model of corrosion fatigue life of 7B04-T6 aluminium alloy[J]. Journal of Aerospace Power, 2016, 31(5):1073-1080(in Chinese).[10] 刘明, 蔡健平, 孙志华, 等. 7B04铝合金海洋性大气腐蚀研究[J]. 装备环境工程, 2010, 7(6):163-166. LIU M, CAI J P, SUN Z H, et al. Study on atmospheric corrosion of 7B04 aluminium alloy[J]. Equipment Environment Engineering, 2010, 7(6):163-166(in Chinese).[11] 孙永庆, 杨志勇, 梁剑雄, 等. 中国商用飞机高强度不锈钢的现状及发展趋势[J]. 钢铁研究学报, 2009, 21(6):1-5. SUN Y Q, YANG Z Y, LIANG J X, et al. Current situation and development trend of high strength stainless steel for commercial aircraft in China[J]. Journal of Iron and Steel Research, 2009, 21(6):1-5(in Chinese).[12] 曹楚南. 腐蚀电化学原理[M]. 北京:化学工业出版社, 2008:165. CAO C N. Corrosion electrochemistry principle[M]. Beijing:Chemical Industry Press, 2008:165(in Chinese).[13] 李涛, 李晓刚, 董超芳, 等. Cl-含量对2A12铝合金初期腐蚀行为的影响[J]. 工程科学学报, 2009, 31(12):1576-1582. LI T, LI X G, DONG C F, et al. Effect of Cl- content on the initial corrosion behavior of 2A12 aluminium alloy[J]. Journal of Engineering Science, 2009, 31(12):1576-1582(in Chinese).[14] ZAID B, SAIDI D, BENZAID A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminium alloy[J]. Corrosion Science, 2008, 50(7):1841-1847.[15] GUILLAUMIN V, MANKOWSKI G. Localized corrosion of 6056 T6 aluminium alloy in chloride media[J]. Corrosion Science, 2000, 42(1):105-125.[16] 刘宇, 石勇, 李宁, 等. 5083铝合金与2205不锈钢在天然海水中的电偶腐蚀行为[J]. 腐蚀与防护, 2012, 33(6):532-534. LIU Y, SHI Y, LI N, et al. Galvanic corrosion behavior of 5083 aluminium alloy and 2205 stainless steel in natural seawater[J]. Corrosion & Protection, 2012, 33(6):532-534(in Chinese).[17] SONG G, JOHANNESSON B, HAPUGODA S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corrosion Science, 2004, 46(4):955-977.[18] 战广深, 殷正安. NaCl溶液中氯离子浓度对铝合金电偶腐蚀的影响[J]. 材料保护, 1994(2):20-23. ZHAN G S, YIN Z A. Effect of chloride ion concentration on galvanic corrosion of aluminium alloy in NaCl solution[J]. Materials Protection, 1994(2):20-23(in Chinese).[19] PERATTA A, HACK T, ADEY R, et al. Galvanic corrosion modelling for aircraft environments[C]//The European Corrosion Congress, 2009.[20] 马洪运, 贾志军, 吴旭冉, 等. 电化学基础(Ⅰ)——物质守恒与法拉第定律及其应用[J]. 储能科学与技术, 2012, 1(2):139-143. MA H Y, JIA Z J, WU X R, et al. Mass conservation and Faraday's Law-One of the fundamental theories of electrochemistry (Ⅰ)[J]. Energy Storage Science and Technology, 2012, 1(2):139-143(in Chinese).[21] 刘文珽, 贺小帆. 飞机结构腐蚀/老化控制与日历延寿技术[M]. 北京:国防工业出版社, 2010:80-81. LIU W T, HE X F. Corrosion/aging control and prolonging the calendar life technology for aircraft structures[M]. Beijing:National Defence Industry Press, 2010:80-81(in Chinese).[22] 刘文珽. 飞机结构日历寿命体系评定技术[M]. 北京:航空工业出版社, 2004:106-108. LIU W T. Calendar life system assessment technique for aircraft structures[M]. Beijing:Aviation Industry Press, 2004:106-108(in Chinese).[23] 李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2):81-83. LI J F, ZHENG Z Q, REN W D. Mechanism of second phase in localized corrosion of aluminum alloy[J]. Materials Review, 2005, 19(2):81-83(in Chinese).
文章导航

/