材料工程与机械制造

闭式叶轮五轴原位检测路径规划与实验验证

  • 李文龙 ,
  • 王刚 ,
  • 尹周平
展开
  • 华中科技大学 数字制造装备与技术国家重点实验室, 武汉 430074

收稿日期: 2017-06-02

  修回日期: 2017-08-25

  网络出版日期: 2017-08-25

基金资助

国家"973"计划(2015CB057304);国家自然科学基金(51535004,91648111);武汉市应用基础研究计划(2017010201010139)

5-axis onsite inspection path generation and experimental verification of enclosed impeller

  • LI Wenlong ,
  • WANG Gang ,
  • YIN Zhouping
Expand
  • State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2017-06-02

  Revised date: 2017-08-25

  Online published: 2017-08-25

Supported by

National Basic Research Program of China (2015CB057304); National Natural Science Foundation of China (51535004, 91648111); Wuhan Applied Basic Research Project (2017010201010139)

摘要

闭式叶轮结构封闭,流道狭长,叶片弯扭曲大,如何生成无干涉且全局光顺的五轴原位检测路径是制约原位检测技术应用的难点问题。根据闭式叶轮曲面特征,定义了4种形式的可接近锥,基于相邻测轴弹簧模型构造了五轴原位检测路径优化目标函数,并通过前向欧拉差分法最小化该目标函数,在定义的连续检测可接近锥中计算最优测轴方向;采用某型号闭式叶轮完成了可接近锥计算、测轴方向优化、无干涉全局光顺检测路径生成等数值仿真与实测实验,验证了所提方法的可行性和有效性。

本文引用格式

李文龙 , 王刚 , 尹周平 . 闭式叶轮五轴原位检测路径规划与实验验证[J]. 航空学报, 2018 , 39(3) : 421474 -421474 . DOI: 10.7527/S1000-6893.2017.421474

Abstract

How to generate the 5-axis onsite inspection path of the enclosed impeller with global-fairing advantage is a difficult task, due to its enclosed structure, long-narrow runner and high-bending blades. This paper defines four kinds of accessibility cones, and constructs the objective function of 5-axis onsite inspection path based on the spring model of adjacent inspection axes. The forward Euler-difference method is used to calculate the inspection directions. An enclosed impeller with 5 blades is used to calculate the accessibility cone, optimize the inspection directions and generate the global-fairing inspection paths without interference. The experiments demonstrate the feasibility and validity of the proposed method.

参考文献

[1] 蔺小军, 陈悦, 王志伟, 等. 面向自适应加工的精锻叶片前后缘模型重构[J]. 航空学报, 2015, 36(5):1695-1703. LIN X J, CHEN Y, WANG Z W, et al. Model restructuring about leading edge and trailing edge of precision forging blade for adaptive machining[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1695-1703(in Chinese).
[2] 高健, 黄沛霖, 文章, 等. 复杂曲面零件加工精度原位检测系统的残余误差补偿[J]. 机械工程学报, 2016, 52(15):139-146. GAO J, HUANG P L, WEN Z, et al. Residual error compensation of in-situ inspection system for precision machining of complex components[J]. Journal of Mechanical Engineering, 2016, 52(15):139-146(in Chinese).
[3] LI W L, WANG G, ZHANG G, et al. A interference-free inspection path generation for impeller blades using an on-machine probe[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3):1218-1226.
[4] 卢万崎, 杨海成, 常智勇, 等. 一种叶片在机测量数据重构建模技术研究[J]. 航空制造技术, 2014(7):84-87. LU W Q, YANG H C, CHANG Z Y, et al. Blade reconstruction method in on-machine inspection[J]. Aeronautical Manufacturing Technology, 2014(7):84-87(in Chinese).
[5] MEARS L, ROTH J T, DJURDJANOVIC D, et al. Quality and inspection of machining operations:CMM integration to the machine tool[J]. ASME Journal of Manufacturing Science and Engineering, 2009, 131(5):051006.
[6] BRANDY H T, DONMEZ MA, GILSINN D E. Methodology for compensating errors detected by process-intermittent inspection[M]. Gaithersburg:National Institute of Standards and Technology, 2001.
[7] CHO M W, KIM G H, SEO T I, et al. Integrated machining error compensation method using OMM data and modified PNN algorithm[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13):1417-1427.
[8] CHO M W, SEO T I. 2002 inspection planning strategy for the on-machine measurement process based on CAD/CAM/CAI integration[J]. International Journal of Advanced Manufacturing Technology, 2002, 19(8):607-617.
[9] 陈岳坪, 高健, 邓海祥, 等. 复杂曲面的在线检测与加工误差补偿方法研究[J]. 机械工程学报, 2012, 48(23):143-151. CHEN Y P, GAO J, DENG H X, et al. On-line inspection and machining error compensation for complex surfaces[J]. Journal of Mechanical Engineering, 2012, 48(23):143-151(in Chinese).
[10] HUANG N D, BI Q Z, WANG Y H, et al. 5-axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2014, 84(6):1-8.
[11] CHO M, KIM D, LEE C, et al. CBIMS:Case-based impeller machining strategy support system[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(6):980-988.
[12] LIU H B, WANG Y Q, JIA Z Y, et al. Integration strategy of on-machine measurement (OMM) and numerical control (NC) machining for the large thin-walled parts with surface correlative constraint[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9-12):1721-1731.
[13] MENG F J, CHEN Z Y, XU R F, et al. Optimal barrel cutter selection for the CNC machining of blisk[J]. Computer-Aided Design, 2014, 53(5):36-45.
[14] 王晶, 张定华, 罗明, 等. 复杂曲面零件五轴加工刀轴整体优化方法[J]. 航空学报, 2013, 34(6):1452-1462. WANG J, ZHANG D H, LUO M, et al. A global tool orientation optimization method for five-axis CNC machining of sculptured surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1452-1462(in Chinese).
[15] CHEN K H. Investigation of tool orientation for milling blade of impeller in five-axis machining[J]. International Journal of Advanced Manufacturing Technology, 2011, 52(1-4):235-244.
[16] CHU C H, HUANG W N, LI Y W. An integrated framework of tool path planning in 5-axis machining of centrifugal impeller with split blades[J]. Journal of Intelligent Manufacturing, 2012, 23(3):687-698.
[17] WU B H, ZHANG D H, LUO M, et al. Collision and interference correction for impeller machining with non-orthogonal four-axis machine tool[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(1-4):693-700.
[18] BI Q Z, WANG Y H, DING H. A GPU-based algorithm for generating collision-free and orientation-smooth five-axis finishing tool paths of a ball-end cutter[J]. International Journal of Production Research, 2010, 48(4):1105-1124.
[19] BI Q Z, WANG Y H, ZHU L M, et al. Wholly smoothing cutter orientations for five-axis NC machining based on cutter contact point mesh[J]. Science in China Series E:Technological Sciences, 2010, 53(5):1294-1303.
[20] PLAKHOTNIK D, LAUWERS B. Graph-based optimization of five-axis machine tool movements by varying tool orientation[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(1):307-318.
文章导航

/