流体力学与飞行力学

典型高超声速内转式进气道激光散射流场显示

  • 李一鸣 ,
  • 李祝飞 ,
  • 杨基明 ,
  • 吴颖川 ,
  • 余安远
展开
  • 1. 中国科学技术大学 近代力学系, 合肥 230026;
    2. 中国空气动力研究与发展中心 超高速空气动力研究所 高超声速冲压发动机技术重点实验室, 绵阳 621000

收稿日期: 2017-05-12

  修回日期: 2017-08-25

  网络出版日期: 2017-08-25

基金资助

国家自然科学基金(11402263,11621202)

Flow visualization of a typical hypersonic inward-turning inlet using laser scattering

  • LI Yiming ,
  • LI Zhufei ,
  • YANG Jiming ,
  • WU Yingchuan ,
  • YU Anyuan
Expand
  • 1. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China;
    2. Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-05-12

  Revised date: 2017-08-25

  Online published: 2017-08-25

Supported by

National Natural Science Foundation of China(11402263, 11621202)

摘要

在名义马赫数为6的激波风洞中,通过预先在试验气体中加入适量的水蒸气,利用水蒸气流经喷管时凝结产生的粒子作为示踪粒子,搭建并验证了平面激光散射系统。采用该流场显示技术,结合适当的光路布置,对类椭圆形转圆形高超声速内转式进气道进行了试验观测,初步得到了进气道前体及隔离段的流场结构。结果表明:水蒸气凝结产生的示踪粒子平均直径约为67 nm,在流场中具有较好的跟随性;内转式进气道前体激波有明显的凹凸性和拐点,前体激波靠近对称面的部分向内凹,而两侧的边缘向外凸出;基于多个流场截面的激光散射图像进行样条插值,重构出的三维前体激波面呈倾斜的糖勺形;隔离段顶板一侧和唇口板一侧各有一对反转流向涡,顶板一侧的涡流区较大,而唇口板一侧的较小,两对流向涡存在一定的非定常性;高速气流区集中在隔离段中心,并且偏向唇口板一侧,而大量的低速气流堆积在顶板一侧,使得隔离段流场的不均匀性显著。

本文引用格式

李一鸣 , 李祝飞 , 杨基明 , 吴颖川 , 余安远 . 典型高超声速内转式进气道激光散射流场显示[J]. 航空学报, 2017 , 38(12) : 121414 -121414 . DOI: 10.7527/S1000-6893.2017.121414

Abstract

A planar laser scattering system is built and then verified in a shock tunnel with a nominal Mach number of 6. A proper amount of water vapor is added into the test gas before the experiment, and then the water vapor condenses into tiny particles when it goes through the shock tunnel nozzle. The condensed H2O particles are used as tracers for the planar laser scattering. With the help of this flow visualization method and sophisticated arrangements of the optical path, the flow field of a hypersonic inward-turning inlet with a transition from the elliptical-like to circular shape is observed in experiments, and the preliminary flow structure in the inlet forebody and the isolator are obtained. The results show that the nominal diameter of the condensate tracers is approximately 67 nm with good following performances in the flow field. The forebody shock is curved and inflected obviously, and is concaved near the symmetry and raised at the sides. Based on several laser scattering images, the three-dimensional forebody shock is rebuilt using a spline interpolation method. As a result, the forebody shock looks like an oblique scoop. There are two pairs of streamwise vortices in the isolator. One vortex-pair near the body-side is large and the other vortex-pair near the cowl-side is small, and both are unsteady. The high-speed flow concentrates in the core region of the isolator and inclines slightly to the cowl-side, whereas the low-speed flow accumulates on the body-side. The flow field of the isolator is thus nonuniform.

参考文献

[1] 刘兴洲. 超燃冲压发动机性能初步研究[J]. 航空发动机, 2007, 33(2):1-4. LIU X Z. Preliminary investigation of scramjet engine performance[J]. Aeroengine, 2007, 33(2):1-4(in Chinese).[2] HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. Reston, VA:AIAA, 1994:430-437.[3] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets:AIAA-2011-2269[R]. Reston, VA:AIAA, 2011.[4] BILLIG F S, BAURLE R A, TAM C, et al. Design and analysis of streamline traced hypersonic inlets:AIAA-1999-4974[R]. Reston, VA:AIAA, 1999.[5] 杨基明,李祝飞,朱雨建,等. 激波的传播与干扰[J]. 力学进展, 2016, 46:201613. YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46:201613(in Chinese).[6] 吴子牛,白晨媛,李娟,等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1):58-85. WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):58-85(in Chinese).[7] SMART M K, WHITE J A. Computational investigation of the performance and back-pressure limits of a hypersonic inlet:AIAA-2002-0508[R]. Reston, VA:AIAA, 2002.[8] 刘雄,王翼,梁剑寒. 方转圆对三维侧压进气道的流动特性影响[J]. 航空学报, 2014, 35(11):2939-2948. LIU X, WANG Y, LIANG J H. Effect of rectangular-to-circular on flow characteristics of three-dimensional sidewall compression inlet[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2939-2948(in Chinese).[9] 王卫星,郭荣伟. 圆形出口内转式进气道流动特征[J]. 航空学报, 2016, 37(2):533-544. WANG W X, GUO R W. Flow characteristics of an inward turning inlet with circular outlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):533-544(in Chinese).[10] SMART M K, TREXLER C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion & Power, 2004, 20(2):288-293.[11] 李祝飞, 黄蓉, 郭帅涛, 等. 高超声速内转式进气道流动的壁面丝线显示[J]. 推进技术, 2017, 38(7):1475-1482. LI Z F, HUANG R, GUO S T, et al. Surface tuft flow visualization in hypersonic inward turning inlet[J]. Journal of Propulsion Technology, 2017, 38(7):1475-1482(in Chinese).[12] 南向军,张堃元,金志光,等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6):988-996. NAN X J, ZHANG K Y, JIN Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):988-996(in Chinese).[13] 李永洲,张堃元,孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10):2970-2979. LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2970-2979(in Chinese).[14] HUANG R, LI Z F, ZHAN D W, et al. Measurements of the streamwise vortices in a hypersonic inward turning inlet:AIAA-2017-2187[R]. Reston, VA:AIAA, 2017.[15] WAGNER J L, YUCEIL K B, CLEMENS N T. Velocimetry measurements of unstart in an inlet-isolator model in Mach 5 flow[J]. AIAA Journal, 2010, 48(9):1875-1888.[16] SCHRIJER F F J, SCARANO F, VAN OUDHEUSDEN B W. Application of PIV in a Mach 7 double-ramp flow[J]. Experiments in Fluids, 2006, 41(2):353-363.[17] MILES R B, LEMPERT W R, FORKEY J N. Laser Rayleigh scattering[J]. Measurement Science and Technology, 2001, 12(5):R33-R51.[18] MILES R B, LEMPERT W R. Quantitative flow visualization in unseeded flows[J]. Annual Review of Fluid Mechanics, 1997, 29:285-326.[19] 易仕和,陈植,朱杨柱,等. (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015, 36(1):98-119. YI S H, CHEN Z, ZHU Y Z, et al. Progress on experimental techniques and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):98-119(in Chinese).[20] 赵玉新,易仕和,田立丰,等. 基于纳米粒子的超声速流动成像[J]. 中国科学E辑:技术科学, 2009, 39(12):1911-1918. ZHAO Y X, YI S H, TIAN L F, et al. Supersonic flow imaging via nanoparticles[J]. Science in China Series E:Technological Sciences, 2009, 39(12):1911-1918.[21] ZHUANG Y, TAN H J, LIU Y, et al. High resolution visualization of Görtler-like vortices in supersonic compression ramp flow[J]. Journal of Visualization, 2017, 20(3):505-508.[22] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Effects of upstream boundary layer on the unsteadiness of shock-induced separation[J]. Journal of Fluid Mechanics, 2007, 585:369-394.[23] POGGIE J, ERBLAND P J, SMITS A J, et al. Quantitative visualization of compressible turbulent shear flows using condensate-enhanced Rayleigh scattering[J]. Experiments in Fluids, 2004, 37(3):438-454.[24] ZHANG C, LEE C. Rayleigh-scattering visualization of the development of second-mode waves[J]. Journal of Visualization, 2017, 20(1):7-12.[25] DO H, IM S, MUNGAL M G, et al. Visualizing supersonic inlet duct unstart using planar laser Rayleigh scattering[J]. Experiments in Fluids, 2011, 50(6):1651-1657.[26] LI Z F, GAO W J, JIANG H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10):2485-2492.[27] 郭向东,黄生洪,吴颖川,等. 氢燃料燃烧加热风洞中水蒸气相变效应的数值研究[J]. 推进技术, 2017, 38(4):1-10. GUO X D, HUANG S H, WU Y C, et al. Numerical evaluation of water vapor phase transition effects in a hydrogen-fueled combustion-heated wind tunnel[J]. Journal of Propulsion Technology, 2017, 38(4):1-10(in Chinese).[28] 黄生洪,徐胜利,李俊杰,等. 水蒸汽凝结对超声速风洞蒸汽引射系统的影响[J]. 推进技术, 2005, 26(5):471-476. HUANG S H, XU S L, LI J J, et al. Effect of vapour condensation on hot steam ejector system of supersonic wind tunnel[J]. Journal of Propulsion Technology, 2005, 26(5):471-476(in Chinese).[29] GLAZYRIN F N, MURSENKOVA I V, ZNAMENSKAYA I A. PIV tracer behavior on propagating shock fronts[J]. Measurement Science and Technology, 2016, 27(1):015302.[30] TEDESCHI G, GOUIN H, ELENA M. Motion of tracer particles in supersonic flows[J]. Experiments in Fluids, 1999, 26(4):288-296.[31] 卫锋,贺旭照,贺元元,等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3):358-364. WEI F, HE X Z, HE Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3):358-364(in Chinese).[32] ZHANG E L, LI Z F, YANG J M, et al. Influence of wall temperature on the flow characteristics of a hypersonic inward turning inlet:AIAA-2017-2386[R]. Reston, VA:AIAA, 2017.[33] COX A J, DEWEERD A J, LINDEN J. An experiment to measure Mie and Rayleigh total scattering cross sections[J]. American Journal of Physics, 2002, 70(6):620-625.
文章导航

/